Galaxies and their Gas at the Peak Epoch of Star Formation

Dawn Erb | Arizona State University | September 30, 2015

The Leonard E. Parker ______
Center for Gravitation, Cosmology & Astrophysics
at the University of Wisconsin-Milwaukee

A brief history of the Universe

Recombination

lonized hydrogen Neutral hydrogen

Universe expands and cools

The cosmic dark ages

400 thousand – 400 million years after the Big Bang Universe contains dark matter, neutral hydrogen and helium gas

Reionization

First stars and galaxies emit ionizing radiation Gas between galaxies becomes ionized Last major phase change in the universe

How did reionization happen?

Galaxies with radio vision

Galaxies are surrounded by neutral hydrogen Hard for ionizing radiation to get out How do we get enough photons?

How did reionization happen?

Need many energetic photons escaping from many galaxies

Starburst galaxies

Starburst galaxies: galactic outflows

Galactic outflows

Intense star formation in small volume

Energy from supernovae and stellar winds, momentum from radiation pressure drive gas out of galaxies

Complex, not understood in detail

Growing galaxies in boxes

Multiple driving mechanisms for outflows

Dominant mechanism may depend on galaxy type

Wide range in temperature, velocity in all galaxies

FIRE simulations
Faucher-Giguere et al 2015
left: neutral hydrogen density
right: temperature

The importance of galactic outflows

Regulate star formation

Do outflows shut off star formation?

Gas between galaxies is chemically enriched

Matt Hall, National Center for Supercomputing Applications

Computer simulation of gas between galaxies: the intergalactic medium

Gas between galaxies is chemically enriched

Computer simulation of gas between galaxies: the intergalactic medium

How do galaxies change over time?

Age of the Universe (billions of years)

Age of the Universe (billions of years)

Looking back in time

Galaxies at the peak epoch of star formation

Q1623-BX392	Q1623-BX385	Q1217-BX99	Q2206-BM61	Q1217-BX137	Q2206-BX84
	1	S			
z=1.8789	z=1.8826	z=1.8921	z=1.9127	z=1.915	z=1.9177
Q2206-BM52	Q1217-BX125	Q2343-BX421	Q1623-BX497	Q2206-BX62	Q1623-BX436
*	•	*	-		*.
z=1.9187	z=1.9197	z=1.9307	z=1.9348	z=1.9358	z=1.9408
Q1549-BX63	Q1217-MD20a	Q1009-BX133	Q1623-BX372	Q1549-BX81	Q0449-BX82
*					
z=1.9508	z=1.9548	z=1.9809	z=1.9822	z=1.9839	z=1.9899
Q1009-BX203	Q0142-BX193	Q0449-BX93	Q0449-BX88	Q0142-BX187	Q1623-BX368
	4		专		
z=1.9969	z=2.006	z=2.0067	z=2.009	z=2.01	z=2.0104
Q2343-MD59	Q2343-BX521	Q0142-BX188	Q1623-BX429	Q0142-BX161	Q1623-BX547
-	-	*	4		
z=2.0116	z=2.0122	z=2.014	z=2.016	z=2.0265	z=2.0517
Q2343-BM175	Q1623-BX428	Q1623-BX524	Q1623-BX452	Q0449-BM72	Q1623-BX355
-				*	*
z=2.0521	z=2.0538	z=2.0541	z=2.0595	z=2.0712	z=2.0722

Law et al 2012

Doppler shifts of emission and absorption lines

Lya and Resonant Scattering

Lya: n=2 to n=1 transition of neutral H, 121.5 nm

Neutral hydrogen in or near galaxies absorbs and re-emits Lya photons

Re-emitted photons have Doppler shift due to the velocity of the atom

Result is scattering of the photon, in both space and wavelength: resonant scattering

Measuring Doppler shifts of photons then reveals velocity structure in the absorbing gas

Most galaxies are starburst galaxies

The importance of faint galaxies

The importance of faint galaxies

Most galaxies are starburst galaxies

Outflows in faint galaxies

