Elucidating the History of the Moon's Surface

High Spatial Resolution ⁴⁰Ar/³⁹Ar Geochronology of Multigenerational Lunar Impact Melt Rocks

Hayden Miller SESE Colloquium March 17th, 2021

 Moon is an unique archive of early Solar System history

Artistic rendering of Hadean Earth (credit: Simone Marchi)

Heavily cratered lunar surface (credit: NASA)

- Moon is an unique archive of early Solar System history
 - Early terrestrial record erased by crustal recycling

Artistic rendering of Hadean Earth (credit: Simone Marchi)

Heavily cratered lunar surface (credit: NASA)

- Moon is an unique archive of early Solar System history
 - Early terrestrial record erased by crustal recycling
 - Implications for emergence of life

Heavily cratered lunar surface (credit: NASA)

 Lunar history can be extrapolated to other solid surfaces in Solar System

Martian surface (credit: European Space Agency)

- Lunar history can be extrapolated to other solid surfaces in Solar System
 - Lunar chronology ties crater size frequency distributions to radiometric time

The lunar surface

Lunar chronology

Credit: NASA

Argon geochronology

- 40 K (t_{1/2} = 1.25 Ga) \rightarrow 40 Ca and 40 Ar
- Neutron irradiation produces ³⁹Ar from ⁴⁰K
- ⁴⁰Ar/³⁹Ar measured in unknown and compared to neutron fluence age monitor

Argon geochronology

- 40 K (t_{1/2} = 1.25 Ga) \rightarrow 40 Ca and 40 Ar
- Neutron irradiation produces ³⁹Ar from ⁴⁰K
- ⁴⁰Ar/³⁹Ar measured in unknown and compared to neutron fluence age monitor

Argon geochronology

- 40 K ($t_{1/2}$ = 1.25 Ga) \rightarrow 40 Ca and 40 Ar
- Neutron irradiation produces ³⁹Ar from ⁴⁰K
- 40Ar/39Ar measured in unknown and compared to neutron fluence age monitor

The UVLAMP 40Ar/39Ar method

- UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations
 - Particularly useful for multi-generational materials
 - 193 nm wavelength, produces no collateral heating outside of ablation pit
 - Ancient nature of lunar materials require only tens of nanograms of ablated material
 - Sample targeting done in petrographic context

The UVLAMP ⁴⁰Ar/³⁹Ar method

 UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations

The UVLAMP ⁴⁰Ar/³⁹Ar method

 UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations

The UVLAMP ⁴⁰Ar/³⁹Ar method

 UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations

Spur Crater – 15455 and 15445

Spur Crater – 15455 and 15445

The Apollo 15 'white an black' rocks

15445 15455

- Macroscopic fragments of plutonic rock hosted within a fragment-laden impact melt breccia
- The two samples are geochemically and petrographically linked

The Apollo 15 'white an black' rocks

- Macroscopic fragments of plutonic rock hosted within a fragment-laden impact melt breccia
- The two samples are geochemically and petrographically linked

15455,383 and 15455,386

15455,405

3668 ± 33 Ma (n=8)

3668 ± 33 Ma (n=8)

3654 ± 86 Ma to 4078 ± 43 Ma

Conclusions

- High-spatial resolution UVLAMP ⁴⁰Ar/³⁹Ar analyses undertaken on the 'white and black' Apollo 15 samples
 - Protracted history of impact bombardment recorded spanning ca. 500 Ma
 - Impact melt generation in 15445 ca. 3670 Ma but ca. 3800 Ma in 15455
 - Despite geologic expectation, these samples may not record impact melt generation associated with the Imbrium basin forming impact
 - Powerful tool, especially when used as a complement to other high-precision chronometers such as U-Pb

Questions

Interpreting lunar ages

Lunar zircon record

Zircons and phosphates from 15455

Crow et al., 2017

Nemchin et al., 2020