Elucidating the History of the Moon’s Surface

High Spatial Resolution 40Ar/39Ar Geochronology of Multigenerational Lunar Impact Melt Rocks

Hayden Miller
SESE Colloquium
March 17th, 2021
Why study the moon?

• Moon is an unique archive of early Solar System history
Why study the moon?

• Moon is an unique archive of early Solar System history
 – Early terrestrial record erased by crustal recycling

Artistic rendering of Hadean Earth (credit: Simone Marchi)
Heavily cratered lunar surface (credit: NASA)
Why study the moon?

• Moon is an unique archive of early Solar System history
 – Early terrestrial record erased by crustal recycling
 – Implications for emergence of life

Artistic rendering of Hadean Earth (credit: Simone Marchi) Heavily cratered lunar surface (credit: NASA)
Why study the moon?

• Lunar history can be extrapolated to other solid surfaces in Solar System
Why study the moon?

• Lunar history can be extrapolated to other solid surfaces in Solar System
 – Lunar chronology ties crater size frequency distributions to radiometric time
The lunar surface
Lunar chronology

- Moon Formation
- LMO Solidification
- Crustal Rocks
 - FANs
 - Mg-Suite
- KREEP Source
- Zircon
- Mare Basalt Source
- Mare Volcanism

Credit: NASA
Argon geochronology

- 40K ($t_{1/2} = 1.25$ Ga) \rightarrow 40Ca and 40Ar
- Neutron irradiation produces 39Ar from 40K
- 40Ar/39Ar measured in unknown and compared to neutron fluence age monitor
Argon geochronology

- $^{40}\text{K} \left(t_{1/2} = 1.25 \text{ Ga}\right) \rightarrow ^{40}\text{Ca}$ and ^{40}Ar
- Neutron irradiation produces ^{39}Ar from ^{40}K
- $^{40}\text{Ar}/^{39}\text{Ar}$ measured in unknown and compared to neutron fluence age monitor

Schaen et al., 2020
Argon geochronology

- $^{40}\text{K} (t_{1/2} = 1.25 \text{ Ga}) \rightarrow ^{40}\text{Ca}$ and ^{40}Ar
- Neutron irradiation produces ^{39}Ar from ^{40}K
- $^{40}\text{Ar}/^{39}\text{Ar}$ measured in unknown and compared to neutron fluence age monitor

Alexander and Kahl, 1974
The UVLAMP $^{40}\text{Ar}/^{39}\text{Ar}$ method

- UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations
 - Particularly useful for multi-generational materials
 - 193 nm wavelength, produces no collateral heating outside of ablation pit
 - Ancient nature of lunar materials require only tens of nanograms of ablated material
 - Sample targeting done in petrographic context
The UVLAMP $^{40}\text{Ar}/^{39}\text{Ar}$ method

- UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations
The UVLAMP $^{40}\text{Ar}/^{39}\text{Ar}$ method

- UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations
The UVLAMP 40Ar/39Ar method

- UV laser ablation microprobe (UVLAMP) analyses permit high-spatial resolution geochronologic investigations
Spur Crater – 15455 and 15445
Spur Crater – 15455 and 15445
The Apollo 15 ‘white an black’ rocks

- Macroscopic fragments of plutonic rock hosted within a fragment-laden impact melt breccia
- The two samples are geochemically and petrographically linked
The Apollo 15 ‘white an black’ rocks

- Macroscopic fragments of plutonic rock hosted within a fragment-laden impact melt breccia
- The two samples are geochemically and petrographically linked
15455,383 and 15455,386
15445
3668 ± 33 Ma
(n=8)
3668 ± 33 Ma (n=8)

3654 ± 86 Ma to 4078 ± 43 Ma
15445

3668 ± 33 Ma (n=8)

3654 ± 86 Ma to 4078 ± 43 Ma

3922 ± 23 Ma (n=9)
15445

3668 ± 33 Ma (n=8)
3654 ± 86 Ma to 4078 ± 43 Ma
3922 ± 23 Ma (n=9)
3738 ± 29 Ma to 4028 ± 26 Ma
Conclusions

• High-spatial resolution UVLAMP $^{40}\text{Ar}/^{39}\text{Ar}$ analyses undertaken on the ‘white and black’ Apollo 15 samples
 – Protracted history of impact bombardment recorded spanning ca. 500 Ma
 – Impact melt generation in 15445 ca. 3670 Ma but ca. 3800 Ma in 15455
 – Despite geologic expectation, these samples may not record impact melt generation associated with the Imbrium basin forming impact
 – Powerful tool, especially when used as a complement to other high-precision chronometers such as U-Pb
Questions
Interpreting lunar ages

Young et al., 2013
Lunar zircon record

Borg et al., 2015
Zircons and phosphates from 15455

Crow et al., 2017

Nemchin et al., 2020