News and Updates


How do academic and commercial stakeholders join forces to promote space science and exploration in the immediate future and decades to come? An expert panel of astronauts, scientists, commercial spaceflight entrepreneurs and Arizona State University researchers will tackle this topic at a free-to-attend session from 6:30-7:30 p.m., April 1, at Space Tech Expo 2014 in Long Beach, Calif.

To date, collaboration among academics and business owners has been limited, said Jim Bell, professor and director of ASU’s NewSpace Initiative, a new university-wide space technology and science program. But he added that such a partnership could open up new and innovative opportunities to broaden interest in space science and exploration. Bell, who is also the president of The Planetary Society, the world’s largest public space advocacy organization, will serve as panel moderator.

“Traditionally, government and academic stakeholders have overlapped on science-based space projects while government and commercial entities have shared defense-based interests and, increasingly, civilian space activities,” he explained. “Looking ahead, leading research and teaching universities like ASU and commercial space enterprises have the greatest potential to chart new territory in everything from rocket engine propulsion and design to microgravity research, space tourism, even mining.”

“Leveraging the Academic-Commercial Partnership for NewSpace” will look at ways to create the next best practices for delivering results of mutual interest to academia and industry. As an ASU professor, Bell said he also hopes to help faculty connect with private space companies, and to identify internship and job opportunities for ASU students.

“Our panel members plan to get out of their comfort zones and avoid rehashing old topics,” Bell said. “We want to zoom in on what exactly is needed by agile academic institutions to give emerging commercial space entrepreneurs the successful future we all believe in.”

How can leading research and teaching academic institutions best partner with commercial space enterprises to advance the goals of both effectively? Scott Smas, NewSpace project manager, said that question is at the crux of ASU’s new initiative.

“The NewSpace Initiative is an added force working to create an interdisciplinary and focused movement across ASU while working with the commercial space industry in new and inventive ways," he explained.

According to Bell, both his roles with NewSpace and The Planetary Society beg the question about how to engage the general public in the future of space science and exploration: “It’s important to the broader national conversation about ways that we can recapture especially young people's interest and fascination with our space frontier.”

In addition to Bell, the ASU-sponsored NewSpace panel will include four distinguished panelists:

• Michael Lopez-Alegria, veteran astronaut, former International Space Station commander and president, Commercial Spaceflight Federation
• Will Pomerantz, vice president, Special Projects, Virgin Galactic
• Thomas D. Jones, veteran astronaut, planetary scientist and senior research scientist,
Florida Institute for Human and Machine Cognition
• Cheryl Nickerson, professor, The Biodesign Institute, Infectious Diseases and Vaccinology, Arizona State University

The free session kicks off the annual Space Tech Expo, April 1-3, at the Long Beach Convention & Entertainment Center. The event is the leading business-to-business exhibition and conference for the space and satellite industry on the West Coast. For information, visit

Image: Scott Smas (left), Jim Bell and Craig Hardgrove lead ASU's NewSpace Initiative, a new university-wide space technology and science program. Photo by: Andy DeLisle

(Judy Crawford)


Seeking to better understand the composition of the lowermost part of Earth’s mantle, located nearly 2,900 kilometers (1,800 miles) below the surface, a team of Arizona State University researchers has developed new simulations that depict the dynamics of deep Earth.

A paper published March 30 in Nature Geoscience reports the team’s findings, which could be used to explain the complex geochemistry of lava from hotspots such as Hawaii.

Mantle convection is the driving force behind continental drift, and causes earthquakes and volcanoes on the surface. Through mantle convection, material from the lowermost part of Earth’s mantle could be carried up to the surface, which offers insight into the composition of the deep Earth. The Earth’s core is very hot (~4000 K), and rocks at the core mantle boundary are heated and expand to have a lower density. These hot rocks (also called mantle plumes) could migrate to the surface because of buoyancy.

Observations, modeling and predictions have indicated that the deepest mantle is compositionally complex and continuously churning and changing.

“The complex chemical signatures of hotspot basalts provide evidence that the composition of the lowermost part of Earth’s mantle is different from other parts," explains lead author Mingming Li, who is pursuing his doctorate in geological sciences. "The main question driving this research is how mantle plumes and different compositional components in Earth’s mantle interact with each other, and how that interaction leads to the complex chemistry of hotspot basalts. The answer to this question is very important for us to understand the nature of mantle convection.”

“Obviously, we cannot go inside of the Earth to see what is happening there," says Li. "However, the process of mantle convection should comply with fundamental physics laws, such as conservation of mass, momentum and energy. What we have done is to simulate the process of mantle convection by solving the equations which control the process of mantle convection."

It has long been suggested that the Earth’s mantle contains several different compositional reservoirs, including an ancient, more-primitive reservoir at the lowermost mantle, recycled oceanic crust and depleted background mantle. The complex geochemistry of lava found at hotspots such as Hawaii are evidence of this. The various compositional components in hotspot lava may be derived from these different mantle reservoirs. The components could become embedded in and carried to the surface by mantle plumes, but it is unclear how individual plumes could successively sample each of these reservoirs.

Joined by his adviser Allen McNamara, geodynamicist and associate professor in ASU’s School of Earth and Space Exploration, and seismologist and SESE professor Ed Garnero, Li and his collaborators’ numerical experiments show that plumes can indeed carry a combination of different materials from several reservoirs.

According to the simulations, some subducted oceanic crust is entrained directly into mantle plumes, but a significant fraction of the crust – up to 10 percent – enters the more primitive reservoirs. As a result, mantle plumes entrain a variable combination of relatively young oceanic crust directly from the subducting slab, older oceanic crust that has been stirred with ancient, more primitive material and background, depleted mantle. Cycling of oceanic crust through mantle reservoirs can therefore explain observations of different recycled oceanic crustal ages, and explain the chemical complexity of hotspot lavas.

“Our calculations take a long time – more than one month for one calculation – but the results are worth it,” says Li.

Watch video simulation here:

(Nikki Cassis)



What do engineering and theater have in common? They share a focus on performance – the performance of materials, technologies, processes and systems, argues Lance Gharavi, an associate professor in ASU’s School of Film, Dance and Theatre, in a Future Tense article for Slate magazine.

Gharavi collaborated with Jake Pinholster, director of the School of Film, Dance and Theatre, and Srikanth Saripalli, a roboticist in the School of Earth and Space Exploration, to create "You n.0," a performance for ASU’s Emerge: The Carnival of the Future, which took place in Downtown Phoenix on March 7.

"You n.0," in Gharavi’s words, is a “series of performed metaphors that address the past, present and future of human/robot relations.” It features Baxter, a cutting-edge industrial robot created by Rethink Robotics, interacting with a cast of aerialists and clowns, and a behind-the-scenes team of technical wizards.

To design the performance, the team started with the question “What can this robot do?" According to Gharavi, “This is almost never an easy question to answer for new technologies, in part because, though capabilities are not unlimited, neither are they certain. One doesn’t so much discover capabilities as produce them. Or rather, one does both. This often involves transforming the technology itself, as well as the processes and means by which you engage the technology. And this is significantly what research in engineering means. It is largely the same in performance.”

To learn more about "You n.0," including how to control a robot with an iPad and the surprising difficulty of teaching Baxter to pop and lock, read the full article at Future Tense. To learn more about Emerge, visit

Future Tense is a collaboration among ASU, the New America Foundation and Slate magazine that explores how emerging technologies affect policy and society.

(Joey Eschrich)



Last week, several Arizona State University faculty, researchers and students made the journey to The Woodlands, Tex. to present at the 45th annual Lunar and Planetary Science Conference (LPSC) March 17-21, 2014. ASU’s School of Earth and Space Exploration contributed to the conference as presenters, discussion leaders, and poster exhibitors.

This five-day conference brings together nearly 2000 international specialists in petrology, geochemistry, geophysics, geology, and astronomy to present the latest results of research in planetary science. LPSC is the premiere conference for lunar and planetary scientists, and has been a significant focal point for planetary science research since its beginning in 1970, when it was known as the Apollo 11 Lunar Science Conference.

The meeting provides an invaluable opportunity for students, not only to present their own research, but also to hear and see firsthand the latest-breaking results from other researchers in their field.

Marc Neveu, a graduate student, won a Lunar and Planetary Institute (LPI) Career Development Award. The award is given to graduate students who submit a first-author abstract to the conference.

“I was told by the organizers that a dozen or so awards were given among 150 applicants. It's exciting, especially since the awardees' names got called out during a lecture by moon astronaut Dave Scott,” says Neveu, whose paper focused on the rocky core of Ceres, an icy world in the main asteroid belt between Mars and Jupiter.

Graduate student Karen Rieck found the conference informative and rewarding. This was her fifth year attending. She presented a talk at the GENESIS team meeting and presented a poster. Both focused on internally standardized measurements of solar wind sodium and potassium in Genesis diamond-like carbon collectors. She also found the annual ANSMET (Antarctic Search for Meteorites) slide show particularly enjoyable.

“Every year it captures the humorous side of meteorite hunting in an otherwise hostile environment,” explains Rieck.

In lunar news, Professor Mark Robinson, who oversees the Lunar Reconnaissance Orbiter Camera, and his team made a strong showing at the conference, especially in the special session on “New Perspectives of the Moon: Enabling Future Lunar Missions”.

“The combined LRO and LROC results once again show that the Moon is a key exploration and science target and should be a high priority for NASA human and robotic exploration,” says Robinson. “The gateway to our Solar System lies just 250,000 miles distant; let’s get going!”

Red Planet research was also discussed by several SESE researchers.

Associate Research Professor Steve Ruff gave a talk on new evidence for an ancient ephemeral lake in Mars’ Gusev Crater. He is using data from the Mini-TES instrument on the Spirit rover and is finding evidence that carbonate rocks (possibly formed in a lake) are more extensive throughout Gusev Crater than originally thought. SESE Exploration Postdoctoral Fellow Lauren Edgar presented a talk titled “A Fluvial Sandbody on Mars: Reconstruction of the Shaler Outcrop, Gale Crater, Mars”. She is studying Mastcam images from Curiosity of an outcrop named Shaler to identify flow directions of ancient fluvial systems. According to Craig Hardgrove, a postdoctoral research associate in SESE and official LPSC microblogger, these were two of the top ASU Mars-related presentations.

“LPSC is THE important meeting in planetary science, and ASU was hugely represented and present there,” said Jim Tyburczy, interim director of the School of Earth and Space Exploration. “With 61 presenters identifying themselves as ASU, we had one of the biggest contingents. Many ASU students were asked to give talks this year, which shows that SESE had a significant research to present at the conference.”

Photo by Karen Rieck

(Nikki Cassis)


What’s the best way to make music with drones? According to David Rothenberg, an experimental musician, professor of philosophy and music, and visiting artist for Arizona State University’s Emerge 2014: The Carnival of the Future, let them give voice to their own secrets and struggles.

“I couldn’t get away from the idea of remote-controlled killing machines dispatched to war zones to eliminate enemies we are too frightened to confront in person,” writes Rothenberg in a Future Tense article for Slate. “I know, these killings are supposed to be effective and precise, but there is something genuinely creepy about the process. So I decided that in my piece the drones would be talking – confessing to their crimes. Of course, I know they are only following orders.”

In the article, Rothenberg discusses the process of creating his “Drone Confidential” piece for Emerge, focusing primarily on the debate among members of the project team about whether to have humans or computer programs control the drones’ flight paths during the performance. Rothenberg created the piece in collaboration with Srikanth Saripalli, a roboticist at ASU's School of Earth and Space Exploration.

Did human pilots win the day, or is Arizona's best drone pilot a computer? And what does it mean to make art with robots? To find out more, read the full article at Future Tense. To learn more about Emerge, visit

Future Tense is a collaboration among ASU, the New America Foundation and Slate magazine that explores how emerging technologies affect policy and society.

Photo:  David Rothenberg jamming with a drone at Arizona State University's Emerge 2014: The Carnival of the Future.
Photo by: Elite Henderson

(Joey Eschrich)


One of the latest stunning mosaics from the Lunar Reconnaissance Orbiter Camera team

Today, the Lunar Reconnaissance Orbiter Camera (LROC), run by the Arizona State University-based team under Professor Mark Robinson, released what very well may be the largest image mosaic available on the web. This map offers a complete picture of the Moon’s northern polar region in stunning detail.

On December 11, 2011, after two and a half years in a near-circular polar orbit, NASA’s Lunar Reconnaissance Orbiter (LRO) entered an elliptical polar orbit, with a periapsis (point where the LRO is closest to the surface) near the south pole, and the apoapsis (point where LRO is furthest from the surface) near the north pole of the Moon. The increased altitude over the northern hemisphere enables the two Narrow Angle Cameras (NACs) and Wide Angle Camera (WAC) to capture more terrain in each image acquired in the northern hemisphere.

The resulting LROC northern polar mosaic (LNPM) is comprised of 10,581 NAC images, collected over four years, and covers the latitude range of 0° to 60° N.

In the fall of 2010 the LROC team produced its first mosaic of the Moon’s northern polar region, but it doesn’t even compare to this new mosaic with its 50x higher resolution and over 680 gigapixels of valid image data covering a region of the Moon slightly larger than the combined area of Alaska and Texas – at a resolution of 2 meters per pixel.

To create the mosaic, each LROC NAC image was map projected on a 30 m/pixel Lunar Orbiter Laser Altimeter (LOLA) derived Digital Terrain Model (DTM) using a software package (written by the United States Geological Survey) called Integrated Software for Imagers and Spectrometers (ISIS).

The LNPM was assembled from individual “collar” mosaics. Each collar mosaic was acquired by imaging the same latitude once every two-hour orbit for a month during which time the rotation of the Moon steadily brought every longitude into view. Each collar mosaic has very similar lighting from start to end and covers 1° to 3° of latitude.

The mosaic was originally assembled as 841 large tiles due to the sheer volume of data. If the mosaic was processed as a single file it would have been approximately 3.3 terabytes in size. Part of the large size is due to the incredible dynamic range of the NACs. The raw images are recorded as 12-bit data (4096 grey levels) then processed to normalized reflectance (a quantitative measure of the percentage of light reflected from each spot on the ground). To preserve the subtle shading gradations of the raw images during processing the NAC images are stored as 32-bit floating-point values (millions of grey levels). The 32-bit values are four times the disk size of the finalized 8-bit (255 grey levels) representation most computers use to display grayscale images. The conversion process from 32-bit to 8-bit pixels results in saturation (group of pixels all with the maximum value of 255) in the brightest areas.

Even with the conversion, the compressed JPEG images that make up the final product take up almost a terabyte of disk space.

In total the massive mosaic required 17,641,035 small tiles to produce the final product.

“The LNPM is another example of LRO observations paving the way for science discoveries and future missions of exploration. Creation of this giant mosaic took four years and a huge team effort across the LRO project. We now have a nearly uniform map to unravel key science questions and find the best landing spots for future exploration,” says Robinson, a professor in the School of Earth and Space Exploration in ASU’s College of Liberal Arts and Sciences.

Read the full post on the LROC site here

Explore the gigapan here

(Nikki Cassis)

Caption 1 (top image): Printed at 300 dpi (a high-quality printing resolution that requires you to peer very closely to distinguish pixels), the LNPM would be larger than a football field.

Caption 2 (bottom image): Spectacular LROC Northern Polar Mosaic (LNPM) allows exploration from 60°N up to the pole at the astounding pixel scale of 2 meters [NASA/GSFC/Arizona State University].



ASU’s Earth & Space Open House is set to take place from 7 to 10 p.m., March 28, at the Interdisciplinary Science and Technology Building IV (ISTB 4) on ASU’s Tempe campus.

Visitors to the free event can attend a public lecture, gaze at the sky through telescopes, watch science demonstrations and explore the interactive displays in ISTB 4, which is located at the corner of McAllister and Terrace.

The theme for this open house is EarthScope: An Earth Science Program. It will feature a public lecture by School of Earth and Space Exploration professor Ramon Arrowsmith on EarthScope and Arizona by Professor Steve Semken as well as journey into the earth in 3-D by Professor Ed Garnero, all moderated by Wendy Bohon. The lecture, titled “EarthScope: An Earth Science Program,” will be held at 7 p.m. in the Marston Exploration Theater.

Lectures are 45 minutes long, followed by a 15-minute Q-and-A session. Seating is on a first-come basis.

There will be one 3-D planetarium show in the Marston Exploration Theater at 9 p.m. Telescopes will be set up from 8 to 10 p.m. next to Skyscape art installation.

To get to the open house, go to the main entrance of ISTB 4, located on the building’s north side.

The monthly open house is partially sponsored by the School of Earth and Space Exploration, GeoClub and AstroDevils: ASU Astronomy Club. The final open house date for the spring is April 25 featuring Mars and Curiosity rover.

For more information, visit or



New shows, adventures for 2014 at Marston Exploration Theater

Explore planets in and beyond our Solar System, fly around galaxies in the local Universe, and experience the scale of all time and all space from the comfort of your seat – in ASU’s Marston Exploration Theater in the Interdisciplinary Science and Technology Building IV.

The Marston Exploration Theater has recently unveiled its newest 3-D astronomy shows — “Undiscovered Worlds” and “To the Edge of the Universe and Everything in Between”. The shows aren’t your ‘typical’ planetarium shows focusing on constellations or the motion of stars. Visitors are invited to sit back and enjoy 3-D immersive entertainment that offers a sensory experience unlike any other. With computer animation and Definiti SkySkan Planetarium technology utilizing 4K projection systems, the Marston Exploration Theater allows visitors to explore the universe in ways you wouldn’t have thought possible.

“To the Edge of the Universe and Everything in Between” is a 60-minute narrated journey from Earth to the cosmic background radiation. Stops along the way include current, topical space science news explorations.

“The planetarium experience is normally an Earth-bound perspective focusing on a representation of your night sky. At the Marston Theater, we engage the Universe on its own terms; we go to where science takes us. We have the opportunity to explore the latest research, the newest discoveries and view firsthand the limits and the potential of our technological reach in space,” says Ric Alling, theater director.

“People come up after almost every presentation expressing that the live flying technology of the Marston Theater completely changes their perspective of the size and structure of the Universe,” says Alling, adding: “I highly recommend this show for everyone in the ASU community as a means of developing fundamental knowledge of the scale of space and time.”

Until very recently, the only planets known to us were the familiar worlds in orbit around our Sun. In the last two decades we have discovered hundreds of new planets, called exoplanets, orbiting other stars. In two more decades they will number in the thousands. The second show, “Undiscovered Worlds”, a 70-minute presentation that includes a movie produced by Science Center Boston, accompanied by a 3-D survey of our exoplanet neighborhood including the very latest in research leading to an understanding of worlds outside our own solar system.

“We tell the tale surrounding this explosion of discovery and examine what will be required to determine which, if any, of these new exoplanets can support life,” says Alling.

The shows can be seen Wednesday evenings at 7:30 p.m., and on Saturdays at 1 p.m. and 3:30 p.m. General admission tickets are $7.50 per person (student admission is $5.50) and can be purchased at the door or online at:

In addition to the new public shows, the Marston Exploration Theater also offers programs for K-12 students. Special rates are available for any group visiting regularly scheduled Marston Theater programs. Please contact

Housed within the Interdisciplinary Science and Technology Building IV, theater visitors can also enjoy the interactive exhibits in the Gallery of Scientific Exploration, located adjacent to the theater, before and after shows.

(Nikki Cassis)



It’s not enough for scientists to do science or for engineers to engineer things. They have to be able to communicate with the public and help regular people understand why their work is important.

On February 26, students in the Arizona State University NASA Space Grant program set out to do just that. Space Grant is a NASA-funded university program that supports the research initiatives of undergraduate and graduate students.

About 45 student researchers—mostly undergraduates—participated in a poster session outside of Interdisciplinary Science and Technology Building IV. This is in preparation for the Arizona/NASA Space Grant Undergraduate Research Internship Statewide Symposium and for future presentations. A poster session is a common sight in the professional research world. Researchers print out key information and graphics on a poster roughly 2 by 3 feet and use it to help facilitate discussion about their research results.

“It doesn’t matter what we discover if we do it by ourselves,” said Tom Sharp, associate director for the Arizona Space Grant Consortium and director of Space Grant at ASU. “It could be the most important discovery ever to the handful of people in your field, but it doesn’t matter if you don’t tell people about it.”

The topics of students’ research range anywhere from robotics to modeling the ionosphere to figuring out the best way to teach kids science.

Stephanie Maxwell, a biomedical engineering senior, researched a method to design an at-home fertility test for couples trying to get pregnant and an at-home hormone monitor for women who are already pregnant.

Maxwell’s research topic was motivated by the high number of patients with miscarriages at the Maricopa Integrated Health System hospital.

More than 500,000 pregnancies end in miscarriage each year in the U.S. largely due to hormone imbalance, and more than six million women in the U.S. struggle to become pregnant, Maxwell said.

“The problem with going to see the doctor is that the woman’s prenatal hormone levels are only measured at that one time and place, but during pregnancy hormone levels can change rapidly,” Maxwell said. Pregnant women with an at-home test could monitor their hormone levels more frequently and possibly prevent miscarriage.

Other students in the program have taken on research with a more iconic NASA feel to it.

Alejandro Miguel Lorenzo, an astrophysics junior, developed a code that calculates the relationship between the mass and radius of an exoplanet (a planet outside of our solar system). The code is the first step in the complicated process of figuring out what these planets are made of.

“This is a quick and easy way to find out what a planet is made of and what its radius should be,” Miguel Lorenzo said. “It’s really cool because we could find a new Earth.”

The code Miguel Lorenzo created could help astronomers map other solar systems, and knowing what kinds of planets are out there helps astronomers answer the question Are we alone?

“How rare are we? Are we really the only people in the billions and billions of stars and planets that are out there?” Miguel Lorenzo asked.

Still other students are working doubly hard to spread the word about science.

Civil engineer Kenneth Magaña taught science to kindergarten through eighth grade students at an after school program at Southwest Elementary school in Phoenix. For two years Southwest Elementary did not have a regular science teacher, and the eighth graders at the school had hardly any science knowledge at all, Magaña said.

The students at Southwest Elementary are asked to build things, design experiments and sometimes dissect animals. The end goal is to teach them the scientific method and engineering process and to inspire them to want to pursue science in college, Magaña said.

“In the beginning, the students were stand-offish and messed around, but now they’re really interested,” he said. “They ask us to bring in specific things that they’re curious about like magnets.”

Magaña’s work is, in part, emblematic of what Space Grant at ASU is trying to accomplish: to inspire future generations of scientists and engineers.

“These students may see themselves in [Magaña] in a way they wouldn’t see themselves in me,” Sharp said. “They see that he can go to ASU and he can be an engineering major. That’s huge.”

Photo: Space Grant intern Michael Bull discusses his research. Credit: Kristen Hwang

(Kristen Hwang)



The sound waves generated by earthquakes and how they teach us about plate tectonics and Earth’s active interior

Geophysicist Edward Garnero will be the speaker of the inaugural “Earth and Planetary Interiors Colloquium” (EPIC) lecture on March 18. EPIC is a new initiative in Arizona State University’s School of Earth and Space Exploration (SESE) that focuses on bringing world-class scientists to ASU to present their research. EPIC aims to promote discussion of that research in a casual setting where ideas can be freely exchanged among students, staff, and faculty.

In his talk, Garnero will portray Earth as a dynamic planet where shaking and rattling from earthquakes make sound. What do they sound like? How are those vibrations used to decipher the mysterious insides of our planet?

“Listening to Earthquakes: the Music of the Earth,” will be a one-hour presentation starting at 7:30 p.m., March 18, in the Marston Exploration Theater on ASU’s Tempe campus. Attendees will see earthquakes and the inner earth in 3-D. It is free and open to the public, reservations are recommended:

Garnero is a geophysics professor in SESE. He uses seismology to image the inaccessible regions of Earth’s interior – from the uppermost mantle to the innermost core. With students and colleagues, Garnero has been developing widely acclaimed visualizations of deep earth discoveries for nearly a decade. Garnero was recently named a Fellow of the American Geophysical Union, acknowledging his discoveries in deep Earth research.

EPIC was created to bring together world-class scientists from around the globe with those at ASU through a public speaker series as well as informal discussions with ASU researchers. EPIC is entirely funded by donations from the public.

For parking and directions, visit: