News and Updates


Timmes to go on research leave to explore stellar explosions and cosmic chemical evolution

The Simons Foundation, which is dedicated to advancing math and science research, will give an Arizona State University astrophysicist the opportunity to spend a year away from classroom and administrative duties to pursue research interests.

This year’s group of Simons Fellows includes ASU’s Francis (Frank) Timmes, a professor in the School of Earth and Space Exploration and ASU's director of Advanced Computing.

Timmes is an astrophysicist interested supernovae, cosmic chemical evolution, astrobiology, the gamma-ray astronomy, and high performance computing. His Simons Fellowship in Theoretical Physics award will let him focus on research for the 2015-16 academic year.

Timmes plans to use his academic year sabbatical to advance his research activities: (1) a NASA funded Theoretical and Computational Astrophysics Networks (TCAN) project aimed at exploring the internal structure and evolutionary histories of supernova progenitors; (2) an NSF funded Software Infrastructure for Sustained Innovation (SI2) project aimed at supporting the Modules for Experiments in Stellar Astrophysics (MESA) software instrument; and (3) within the Joint Institute for Nuclear Astrophysics – Center for the Evolution of the Elements (JINA-CEE), an NSF funded Physics Frontier Center.

“I am very excited about the opportunity provided by the Simons Fellowship. It will give me the time and flexibility to pursue leading-edge research with colleagues as research projects unfold,” said Timmes, who plans to visit the Kavli Institute for Theoretical Physics at University of California Santa Barbara, as well as experts in nuclear astrophysics at Michigan State University and the University of Notre Dame.

Research leaves from classroom teaching and administrative obligations can provide strong intellectual stimulation and lead to increased creativity and productivity in research. The Simons Fellows program is intended to make leaves more productive by enabling the extension of sabbatical leaves from one academic term to a full academic year.

Simons Fellows are chosen based on research accomplishment in the five years prior to application and the potential scientific impact of the fellowship.

“I feel fortunate because very few organizations fund sabbatical research in Theoretical Physics,” Timmes said of the award. “I am grateful to the Simons Foundation for their support of our field.”

Timmes is one of only 14 scholars to receive the award for theoretical physics. Timmes accompanies professors from other top universities and colleges in the United States such as Harvard, Cornell and Massachusetts Institute of Technology, to name a few. He is ASU’s first Simons Fellow.

The Simons Foundation is a private foundation based in New York City, incorporated in 1994 by Jim and Marilyn Simons. Its mission is to advance the frontiers of research in mathematics and the basic sciences by sponsoring a range of programs that aim to promote a deeper understanding of our world. The Simons Foundation Mathematics and Physical Sciences division, established in 2010, supports research in mathematics, theoretical physics and theoretical computer science and provides funding for individuals, institutions and science infrastructure, including the Simons Fellows.

Image: With his Simons Fellowship, Frank Timmes will conduct forefront research on stars using advanced computing instruments and tools.

(Nikki Cassis)



Infrared and visual images of the Martian surface taken by Arizona State University's THEMIS camera are mapping dust and rocks at the landing site for NASA's upcoming InSight mission to Mars.

NASA's next Mars space probe, a lander named InSight, is due to touch down on the Red Planet in September 2016 with a mission focused on the planet's internal properties. Its landing place has been chosen with help from a Mars-orbiting, heat-sensitive camera designed and operated at Arizona State University.

THEMIS maps of InSight landing ellipse, as seen in daytime infrared (top) and night.Working at nine infrared and five visual wavelengths, the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter has been in operation since early 2002. Its data have let scientists create a near-global map of Martian surface properties.

More recently, THEMIS has been surveying the rocks, sand, dust and surface materials across InSight's four candidate landing areas. NASA has now picked as the prime landing site one location in Elysium Planitia, a region where ancient lava flows cover the ground.

"To land a probe safely on Mars, you need to come down in a flat, smooth place," said Jonathon Hill, of Arizona State University's Mars Space Flight Facility, part of ASU's School of Earth and Space Exploration. A staff member and doctoral student in planetary science, Hill has a day-to-day role in targeting specific areas of Mars for THEMIS to image.

"Picking a safe place," he said, "means the landing site can't be full of big rocks or covered in a thick layer of dust."

By measuring how quickly the ground cools at night or warms in sunlight, THEMIS can tell the proportion of rocks and dust on the ground and thus help paint a picture of what awaits the lander at the surface.

InSight (short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) carries two main instruments, a heat-flow probe and a seismometer, both being deployed using a robotic arm. The heat probe requires that the ground within reach of the arm be penetrable by the probe, which will hammer itself into the soil to a depth of three to five yards, or meters.

"InSight's mission planning team worked closely with us to find places with a suitable surface for the spacecraft to go," says Hill. Additional data and imaging came from the High Resolution Imaging Science Experiment (HiRISE) on NASA's Mars Reconnaissance Orbiter.

While THEMIS' main contribution to NASA's site choice was its infrared data, THEMIS is also currently taking visual images of the entire landing site ellipse, which represents the target zone. The visual images each cover a smaller area, but have about five times sharper resolution than the infrared ones.

Scouting ahead is old story

Checking out a Martian landing site ahead of touchdown is a now-familiar role for THEMIS, said ASU's Philip Christensen. A Regents' Professor of geological sciences in the School of Earth and Space Exploration, Christensen is the designer and principal investigator for the THEMIS camera.

"Before NASA's Curiosity Mars rover landed in Gale Crater in 2012," he said, "THEMIS surveyed the surface materials at dozens of candidate landing areas scientists were evaluating." And earlier, he noted, "THEMIS selected the landing site for NASA's Phoenix Mars probe, which landed in 2008, by mapping the rocks and dust at numerous potential sites to find the safest one."

Unlike NASA's recent Mars landers, InSight is not a rover. Built using the same flight platform as the Mars Phoenix lander, InSight will touch down in one place and stay there for its entire mission, projected to last two Earth years.

But immobility means that if InSight came down in a location that's too dusty or rocky, it wouldn't be able to drive away from the landing site and find a better location. This raised the stakes on where it lands, and that's where THEMIS has played its part.

Said Christensen, "We're delighted to help find a good landing spot for InSight. And also to be helping scientists learn more about Mars, and deepen our picture of this intriguing world next door to Earth."

The School of Earth and Space Exploration is a unit in ASU's College of Liberal Arts and Sciences. 




A fossil lower jaw found in the Ledi-Geraru research area, Afar Regional State, Ethiopia, pushes back evidence for the human genus — Homo — to 2.8 million years ago, according to a pair of reports published March 4 in the online version of the journal Science. The jaw predates the previously known fossils of the Homo lineage by approximately 400,000 years. It was discovered in 2013 by an international team led by Arizona State University scientists Kaye E. Reed, Christopher J. Campisano and J Ramón Arrowsmith, and Brian A. Villmoare of the University of Nevada, Las Vegas.

For decades, scientists have been searching for African fossils documenting the earliest phases of the Homo lineage, but specimens recovered from the critical time interval between 3 and 2.5 million years ago have been frustratingly few and often poorly preserved. As a result, there has been little agreement on the time of origin of the lineage that ultimately gave rise to modern humans. At 2.8 million years, the new Ledi-Geraru fossil provides clues to changes in the jaw and teeth in Homo only 200,000 years after the last known occurrence of Australopithecus afarensis (“Lucy”) from the nearby Ethiopian site of Hadar.

Found by team member and ASU graduate student Chalachew Seyoum, the Ledi-Geraru fossil preserves the left side of the lower jaw, or mandible, along with five teeth. The fossil analysis, led by Villmoare and William H. Kimbel, director of ASU’s Institute of Human Origins (IHO), revealed advanced features, for example, slim molars, symmetrical premolars and an evenly proportioned jaw, that distinguish early species on the Homo lineage, such as Homo habilis at 2 million years ago, from the more apelike early Australopithecus. But the primitive, sloping chin links the Ledi-Geraru jaw to a Lucy-like ancestor.

“In spite of lot of searching, fossils on the Homo lineage older than 2 million years ago are very rare,” says Villmoare. “To have a glimpse of the very earliest phase of our lineage’s evolution is particularly exciting.”

In a report in the journal Nature, Fred Spoor and colleagues present a new reconstruction of the deformed mandible belonging to the 1.8 million-year-old iconic type-specimen of Homo habilis (“Handy Man”) from Olduvai Gorge, Tanzania. The reconstruction presents an unexpectedly primitive portrait of the H. habilis jaw and makes a good link back to the Ledi fossil.

“The Ledi jaw helps narrow the evolutionary gap between Australopithecus and early Homo,” says Kimbel. “It’s an excellent case of a transitional fossil in a critical time period in human evolution.”

Global climate change that led to increased African aridity after about 2.8 million years ago is often hypothesized to have stimulated species appearances and extinctions, including the origin of Homo. In the companion paper on the geological and environmental contexts of the Ledi-Geraru jaw, Erin N. DiMaggio, of Pennsylvania State University (SESE Ph.D. 2013), and colleagues found the fossil mammal assemblage contemporary with this jaw to be dominated by species that lived in more open habitats—grasslands and low shrubs—than those common at older Australopithecus-bearing sites, such as Hadar, where Lucy’s species is found.

“We can see the 2.8 million year aridity signal in the Ledi-Geraru faunal community,” says research team co-leader Kaye Reed, “but it’s still too soon to say that this means climate change is responsible for the origin of Homo. We need a larger sample of hominin fossils, and that’s why we continue to come to the Ledi-Geraru area to search.”

Cross Collaboration
The collaboration between ASU anthropologists and geologists began in 2001 when Kaye Reed and Charles Lockwood were new professors in the ASU Institute of Human Origins and School of Human Evolution and Social Change. They needed a geologist to join them as they started working in a new area closer to what was thought to be the depositional center of the “Hadar” basin.

According to Professor Ramón Arrowsmith in ASU’s School of Earth and Space Exploration, “They asked if I knew anyone who might be interested and I thought about it and I said that I could give it a try. So we started the first season in January 2002. We worked for quite some time, going 2002, 2004, 2005, 2006, 2008, 2009, 2012, 2013, and 2015 so far!”

Erin DiMaggio, the first author of the paper on the geology, started with Arrowsmith working on this project in 2005. She did her Ph.D. on the topic and graduated from SESE in 2013.

While Arrowsmith was not onsite when the jaw was found, he heard the news soon after.

“About week after I had returned from being in the field with them, I received a phone call from Ethiopia early in the morning. I was worried that there was an accident or something, but actually it was Erin who was shouting and happy and said that they had found the mandible,” recalls Arrowsmith.

DiMaggio and Arrowsmith’s work was to build on the very little prior information to produce a structural and stratigraphic and temporal framework into which fossils of importance could be placed.

“The area is faulted due to regional extension pulling the Horn of Africa away to the east and Arabia away to the northeast from the rest of Africa, so we have to divide it into separate fault blocks and characterize each individually and then relate them temporally both by the basic logic of geology as well as by numerical and correlative dating of numerous volcanic deposits, known as tephra,” explains Arrowsmith. “The important point is that the sedimentary sequence represents a time period previously undocumented in the region, hence the opportunity of finding and documenting this mandible.”

The research team includes:
• Erin N. DiMaggio (Pennsylvania State University), Christopher J. Campisano (ASU Institute of Human Origins and School of Human Evolution and Social Change), J. Ramón Arrowsmith (ASU School of Earth and Space Exploration), Guillaume Dupont-Nivet (CNRS Géosciences Rennes), and Alan L. Deino (Berkeley Geochronology Center), who conducted the geological research
• Faysal Bibi (Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science), Margaret E. Lewis (Stockton University), John Rowan (ASU Institute of Human Origins and School of Human Evolution and Social Change), Antoine Souron (Human Evolution Research Center, University of California, Berkeley), and Lars Werdelin (Swedish Museum of Natural History), who identified the fossil mammals
• Kaye E. Reed (ASU Institute of Human Origins and School of Human Evolution and Social Change), who reconstructed the past habitats based on the faunal communities
• David R. Braun (George Washington University), who conducted archaeological research
• Brian A. Villmoare (University of Nevada Las Vegas), William H. Kimbel (ASU Institute of Human Origins and School of Human Evolution and Social Change), and Chalachew Seyoum (ASU Institute of Human Origins and School of Human Evolution and Social Change, and Authority for Research and Conservation of Cultural Heritage, Addis Ababa), who analyzed the hominin fossil.

Research funding was provided by the National Science Foundation (BCS-1157351, BCS-1322017, and BCS-0725122 HOMINID grant), the Institute of Human Origins at Arizona State University, the George Washington University Selective Excellence Program, AAPG, SEPM, GSA, the Philanthropic Education Organization, Marie Curie CIG, Fyssen, and HERC/UC Berkeley.

Photo of Ramon Arrowsmith and Erin DiMaggio. Photo by: Matt Jungers

(Julie Russ)



Congratulations to SESE undergraduate student Carl Fields for wining top prize for best poster by an undergraduate student at the National Society of Black Physicists. Fields is an astrophysics major in SESE. For the past year he has been working with Professor Frank Timmes.



In case you were wondering about the 30-foot-high metal tower that suddenly appeared amid a patch of trees on the east side of Arizona State University’s Tempe campus – the one with an array of sensors and monitors attached to it – it’s not capturing data from your cell phone or laptop as you walk by. It’s a meteorological flux tower assembled by three ASU engineering students.

The structure is gathering information about the surrounding ground surface and atmospheric conditions – tracking changes in moisture, carbon dioxide, weather and wind speed and direction.

The sensing devices are detecting and measuring evaporation and gas and heat transfer processes between the soil and the ambient atmosphere.

The students will be using the data as part of larger projects to study how an area’s natural environmental footprint is impacted by the built urban environment – and vice versa.

They plan to move the tower over about a year’s time to several locations on three or four of ASU’s campuses to get readings in a variety of different settings.

(Joe Kullman)

Caption: Three ASU engineering students built a meteorological flux tower to study the interactions between the natural environment and urban development. From left, they are undergraduate civil engineering student Ivan Lopez-Castrillo, geological sciences doctoral student Adam Schreiner-McGraw and environmental engineering doctoral student Nolie Pierini. They are working under the guidance of Enrique Vivoni (at far right), an associate professor in the School of Sustainable Engineering and the Built Environment, and the School of Earth and Space Exploration. Photography by Jessica Hochreiter/ASU


Traveling over 11.3 billion miles at an astonishing 11 miles a second, the Voyager satellites are our farthest flung emissaries and the first human-made objects to travel beyond our solar system. Launched in 1977, the Voyagers 1 and 2 each carry messages that define humanity—everything from music recordings, pictures of Antarctic exploration, ballet dancers, and traffic jams. With Voyager 2 set to leave the solar system in 2015, it’s the perfect time to go back to the beginning of this project. ASU professor Jim Bell’s "THE INTERSTELLAR AGE: Inside the Forty-Year Voyager Mission" (Dutton; On-sale: February 24, 2015) is the ultimate guide and the first book to tell the whole story of the Voyager spacecraft and its scientific discoveries.

The Voyager mission was planned as a grand tour beyond the moon; beyond Mars, Jupiter, and Saturn; and maybe even beyond our solar system. The fact that it actually happened and that the satellites have been sending clear images of the outer planets and moons for nearly forty years makes this mission not only a success, but also humanity’s greatest mission of exploration ever. In THE INTERSTELLAR AGE, Bell reveals what drove and continues to drive the members of this extraordinary team such as Ed Stone, Voyager’s chief scientist and one-time head of NASA’s Jet Propulsion Lab and Charlie Kohlhase, an orbital dynamics engineer who helped to design many of the critical slingshot maneuvers around the planets.

Bell also details the Voyagers themselves – from the instruments and nuclear reactors they carry, to the famous gold record with recordings of Brahms, Beethoven, and Chuck Berry’s “Johnny B. Goode.” He also explains in fascinating detail how the engineers had to devise ways for the spacecraft to recognize problems on their own, and what will happen as the nuclear reactors on board run down.
When the first Voyager satellite left our solar system two years ago, it rekindled the media and America’s fascination with space, and the imminent departure of the second is bound to do the same. In this golden era of space exploration, Bell’s THE INTERSTELLAR AGE is an awe-inspiring story of the pioneers of this movement and their historic scientific achievements.

Bell is a professor in the School of Earth and Space Exploration at Arizona State University, an adjunct professor in the Department of Astronomy at Cornell University, and the president of the Planetary Society. He and his teammates have received more than a dozen NASA Group Achievement Awards for their work on space missions, and he was the recipient of the 2011 Carl Sagan Medal for Excellence in Public Communication in Planetary Science from the American Astronomical Society.



An interview with Scott Parazynski, ASU’S first Designated University Explorer

By Claire Topal, Senior Research Consultant, Center for Sustainable Health

When you have summited Mt. Everest and practiced medicine in space, you gain perspective that few can say they share. Reflecting on his experiences 29,000 feet above sea level on the world’s highest mountain, and orbiting the earth at 17,500 miles per hour, Scott Parazynski tells us what extreme settings clarify about health and healthcare.

On the big mountaintops of the world, the challenges of hypoxia and altitude-related illness are enormous. “If we can monitor and predict common problems,” Scott explains, “we could prevent the onset of high altitude pulmonary edema or cerebral edema. Technology could give us a critical lead in cases like this, creating enough time to turn the endangered person around now rather than waiting until they’re extremely ill and no longer mobile.”

“The sensitivity of the algorithm is the key,” he clarified, “whether it’s working in beat-to-beat variability, a dip in oxygen saturation, respiratory drive, or CO2 level. In other words, we need to measure things we can’t feel or see. New technologies help us determine—in the operating room, the ICU, and even the home (not just on mountaintops)—whether to keep pressing on as we are, or whether to make a change, before change becomes either too difficult, or a desperate life or death necessity.”

In space, the medical challenges may be a little different, but the opportunities that noninvasive technologies create are similar—and even more extreme. “When we go up into space, our muscululoskeletal system kind of goes on holiday,” Scott explains. “Zero gravity can make systems atrophy. That’s not so much of a problem while you’re still in space, but if you want to come back healthy, you need a cardiovascular reserve; your muscles and bones need to maintain strength and integrity. Monitoring of these systems is very important and manageable with quite simple devices.”

“The experience of space flight is actually a great model of accelerated aging,” Scott added. For me, this immediately conjured images of the mysterious “life force” balls of light from the 1985 Ron Howard film Cocoon. While practicing medicine in space unfortunately hasn’t revealed the formula for eternal youth, Scott notes that it does help us understand and predict long-term deterioration, not just immediate medical problems.

“In space, our bones thin, our balance systems change, and sleep disorders arise due to the lack of diurnal variability in daylight. There’s cardiovascular de-conditioning. If we can use monitoring systems to assess the well-being of astronauts, those would certainly be of benefit to seniors and post-menopausal women who are at a greater risk of osteoporosis and other things of that nature,” he explains.

Predicting problems before they occur and opening doors for prevention and early treatment sound great. After all, isn’t that the bedrock of the practice of medicine? Doesn’t it save costs? Yes. Every clinician I know talks a lot about how amazing it would be if we could find a way for the predictive and preventative tools at our fingertips to truly do their jobs. Sadly, health systems still don’t seem to make that vision a practical reality.

Why not? The human race has accomplished incredible feats in human space exploration, and now space tourism has even become a reality. Is healthcare really harder?

For Scott, it’s a question of prioritization. “We’re not organized. We don’t have the right mindset collectively. We need to align competing pressures on our healthcare system and take advantage of the motivation and drive of younger, connected populations. Unfortunately, we’ve prioritized hi-tech over effectiveness and quality.”

More data and more devices are definitely not the answer. “We need to be much smarter in the way that we look at the data we already have,” Scott counsels. Common standards for data sharing and mining provide one important piece of the better-healthcare-system puzzle.

Scott offers a glimpse into the ICU to illustrate the need for better integration. “There are typically dozens of very invasive monitors in the ICU that send all sorts of data to clinicians. In most cases, there is no way to integrate this data. As a result, it’s really hard to see the important inflection points that presage the downstream data outcome.”

While affordable, noninvasive biosensors are proliferating on the consumer market, data integration is an issue there, too. How do we understand all this information – the big picture – over time? Apps and tools that claim to help individuals do this are increasing, but healthcare needs to make this happen on a broader scale, too. And that looks a little different. “Systems need to find a way to compile all the data, anonymize it, and then sift through it to see if there were indicators five days ahead of a person’s massive myocardial infarction, for example,” explains Scott. “That way, we can be spring-loaded into action for the next 1,000 patients who head down the very same path, ideally preventing bad outcomes.”

In other words, it’s not about the technology; the key is how we use the technology and the information it provides. Scott warns that a misperception has evolved that unless we use all the scanners and the expensive genomic diagnostic tools that exist, we’re not getting (or providing) quality healthcare. But that’s really not the case. “Our priorities in terms of where we focus our resources are also skewed,” he says. “Our healthcare system is essentially organized around the last month of life, instead of preventative care.”

The implications of Scott’s observations are just as serious for costs as they are for health outcomes. “We won’t be able to afford a healthcare system in the future if we don’t do something drastic,” he warns. “The Affordable Care Act may not offer the perfect solution, but it’s trying to do some of the right things, which are to reward positive health outcomes and keep people out of the hospital. Hopefully, more incentives to reward the delivery of really good preventative care will reduce cost and give us a higher quality of life – and a longer life.”

This is where those biosensors that facilitate continuous and unobtrusive monitoring come in. They empower us to understand health patterns with greater sensitivity and frequency.

One area of particular interest to Scott—and Project HoneyBee—is in the realm of post-hospital discharge monitoring. “If we can check two or three days ahead of time if a person who had bypass surgery or was being treated for congestive heart failure was about to have more problems, we could get them in for evaluation or maybe even just remotely adjust medication to bring their condition back into greater equilibrium.” The result: healthier, happier people, and much lower costs for systems.

Across the breadth of medicine, whether the issue is endocrine, cardiac, or oncologic, being able to monitor people outside of the hospital and the ICU is critical to preventing the serious outcomes that result from reacting too late. “If we can get out ahead of problems,” Scott notes, “they’re much more easily managed, less costly, and you have better outcomes as well.”

The best-case scenario for Scott is if the healthcare system could embrace changes that are, well, already beginning to happen. More and more people are independently opting to wear biosensors, the goal being motivation toward healthier behaviors. “We already have a really engaged population, and I think adhering to this kind of healthy, monitored lifestyle is only going to become more of a trend. The healthcare system should support and integrate this – not ignore it and make it difficult for clinicians to engage.”

Let’s face it: we may have human tourists on the moon before the healthcare system gets things right. But let that motivate, not demoralize us. Space travel shows us that literally anything is possible, and fortunately we still have a little time left to turn the healthcare system around. Scott assures me that neither summiting Mt. Everest nor traveling hundreds of thousands of miles above earth are pre-requisites.

Image: Scott Parazynski and Doug Wheelock in orbit. Courtesy: NASA



NASA has selected 14 small satellites from 12 states to fly as auxiliary payloads aboard rockets planned to launch in 2016, 2017 and 2018. The proposed CubeSats come from universities across the country, non-profit organizations and NASA field centers. Arizona State University was one of the institutions selected for sponsoring a satellite.

The selections are part of the sixth round of NASA’s CubeSat Launch Initiative. CubeSats are a class of research spacecraft called nanosatellites. The cube-shaped satellites vary in size from large coffee mugs to shoeboxes. The selected satellites are eligible for placement on a launch manifest after final negotiations, depending on the availability of a flight opportunity. The ASU satellite is expected to be flight ready by May, 2016.

The ASU project is called the Asteroid Origins Satellite, or AOSAT I. It is a science laboratory that will be the world’s first CubeSat microgravity laboratory. It will enable a unique set of science and technology experiments to answer fundamental questions of how the solar system formed and understand the surface dynamics of asteroids and comets. Once launched, it will be in space for at least eight months if not longer, depending on the orbit.

“There is great and growing interest in exploring the native environment of asteroids,” says ASU Professor Erik Asphaug. “Instead of a billion-dollar mission taking a decade to develop, we have decided to build a low cost ‘patch of asteroid’ in orbit, not as a substitute for an asteroid mission but as a testbed for validating – reducing the cost and risk – of mission concepts related to asteroid deflection, sample return, and resource utilization.”

About the same size as a loaf of bread, AOSAT I was designed by a collaborative team centered in ASU’s School of Earth and Space Exploration, headed by science principal investigator Asphaug, and engineering principal investigator Jekan Thanga, a roboticist and an assistant professor. The team also includes researchers from partner institutions, including, JPL, University of Maryland, and University of Nevada, Las Vegas.

The ASU team’s roster boasts student talent as well. Jack Lightholder (computer science major) serves as the project engineer and Viranga Perera (SESE PhD student) is the project scientist. Between 2014 and 2017, a total of 32 undergraduates will be involved, along with 15 master’s students, three PhD students and two postdocs. The students work as part of SpaceTREx (Space and Terrestrial Robotic Exploration Laboratory) and the Planetary Formation Lab, headed by Thanga and Asphaug, respectively.

“Talented students under direct supervision of faculty members work on many of the critical subsystems for AOSAT 1. They are an integral part of the team. Many are multi-talented individuals, who I would have trouble distinguishing from professionals,” said Thanga.

The program is providing students and young professionals with the opportunity to participate from start to finish like never before in satellite missions. AOSAT I seeks to combine science and engineering to produce a whole line of CubeSat science laboratories in space. The potential applications spread beyond planetary sciences into life-sciences and long duration human survival in space. According to Thanga, the hope is to spin-off these capabilities into future partnerships with the student-led Sun Devil Satellite Laboratory and Dust Devils.

“One of the great things about AOSAT is that its life cycle is comparable to the tour-of-duty of a student at ASU. This makes it a highly tangible experience, where a student can design an experiment and fly it in space, and collect and analyze the data, all as part of a thesis project. This is way outside the box of standard missions, and will set the pace for student-led missions to come,” says Asphaug.

AOSAT I will be assembled in the Interdisciplinary Science and Technology Building IV (ISTB 4) clean room, which provide state-of-the-art facilities for the design, construction, assembly and testing of small spacecraft. In parallel, the NewSpace Initiative ( headed by Professor Jim Bell is coordinating efforts to rebuild ASU’s satellite ground station. A mission control center for AOSAT 1 and future ASU led CubeSat missions will be housed on the ground floor of ISTB 4. This will enable ASU to join an elite club consisting of a handful of government institutions, private entities and universities in having complete control of the space mission in house.

Image: Arizona State University researchers build their own “patch of asteroid” inside of a small spinning satellite seen here in this artist rendering. Credit: Sean Amidan

(Nikki Cassis)




Earth is nearly 4,000 miles deep, and other than the outermost few miles, is inaccessible to humans. Seismology is the only tool to accurately image the deep interior of Earth. Over the last few decades, seismologists have used the tool of seismic tomography to map out the interior of Earth (much like medical CT scan tomography to image the human body).

Ed Garnero, a geophysicist at Arizona State University, will share his research on Earth’s dynamic interior at the American Association for the Advancement of Science annual meeting on Feb. 13.

For nearly 30 years, Garnero has focused his research on the area between Earth’s uppermost mantle to the innermost core.

In his lecture “Interpreting Earth's Largest Internal Seismic Anomalies: Deep Thermochemical Piles,” Garnero will discuss how modern research shows that many surface processes on our planet are related to dynamic phenomena within. He will be sharing cutting-edge images of Earth's interior, which reveal two massive continental-sized blobs half-way to Earth's center that likely relate to where the most massive eruptions happen at Earth's surface.

“One blob is located beneath the Pacific Ocean, the other is nearly on the opposite side of Earth, beneath the Atlantic and part of the African continent,” says Garnero, a professor in ASU’s School of Earth and Space Exploration. “The massive blobs are important because they appear to play a role in convective processes, including where mantle plumes originate – plumes are thought to give rise to Earth's hotspot volcanoes.”

Observations, modeling and predictions show the inner Earth to be chemically complex and continuously churning and changing. Tomographic images constructed from seismic wave readings point to differences in the speeds of waves that go through the mantle. This difference in wave speeds provides a sort of map of the major boundaries inside the mantle – where hot areas are, where cold areas are, where there are regions that might be a different composition, etc.

“These continent sized blobs have properties that result in seismic waves traveling more sluggishly through them,” explains Garnero. “Our recent research adds to the body of knowledge that supports these blobs being chemically distinct from the rest of the mantle rock.”

(Nikki Cassis)


It’s been more than 40 years since astronauts returned the last Apollo samples from the moon, and since then those samples have undergone some of the most extensive and comprehensive analysis of any geological collection. A team led by ASU researchers has now refined the timeline of meteorite impacts on the moon through a pioneering application of laser microprobe technology to Apollo 17 samples.

Impact cratering is the most ubiquitous geologic process affecting the solid surfaces of planetary bodies in the solar system. The moon’s scarred surface serves as a record of meteorite bombardment that spans much of solar system history. Developing an absolute chronology of lunar impact events is of particular interest because the moon is an important proxy for understanding the early bombardment history of Earth, which has been largely erased by plate tectonics and erosion, and because we can use the lunar impact record to infer the ages of other cratered surfaces in the inner solar system.

Researchers in ASU’s Group 18 Laboratories, headed by Professor Kip Hodges, used an ultraviolet laser microprobe attached to a high-sensitivity mass spectrometer to analyze argon isotopes in samples returned by Apollo 17. While the laser microprobe 40Ar/39Ar technique has been applied to a large number of problems in terrestrial geochronology, including studies of texturally complex samples, this is its first time it has been applied to samples from the Apollo archive.

The samples analyzed by the ASU team are known as lunar impact melt breccias — mash-ups of glass, rock and crystal fragments that were created by impact events on the moon’s surface.

When a meteor strikes another planetary body, the impact produces very large amounts of energy, some of which goes into shock heating and melting the target rocks. These extreme conditions can ‘restart the clock’ for some mineral-isotopic chronometers, particularly for material melted during impact. As a result, the absolute ages of lunar craters are primarily determined through isotope geochronology of components of the target rocks that were shocked and heated to the point of melting, and which have since solidified.

However, lunar rocks may have experienced multiple impact events over the course of billions of years of bombardment, potentially complicating attempts to date samples and relate the results to the ages of particular impact structures.

Conventional wisdom holds that the largest impact basins on the moon were responsible for generating the vast majority of impact melts, and therefore that nearly all of the samples dated must be related to the formation of those basins.

While it is true that enormous quantities of impact melt are generated by basin-scale impact events, recent images taken by the Lunar Reconnaissance Orbiter Camera confirm that even small craters with diameters on the order of 100 meters can generate impact melts. The team’s findings have important implications for this particular observation. The results are published in the inaugural issue of the American Association for the Advancement of Science’s newest journal, Science Advances, on Feb. 12.

“One of the samples we analyzed, 77115, records evidence for only one impact event, which may or may not be related to a basin-forming impact event. In contrast, we found that the other sample, 73217, preserves evidence for at least three impact events occurring over several hundred million years, not all of which can be related to basin-scale impacts,” says Cameron Mercer, lead author of the paper and a graduate student in ASU’s School of Earth and Space Exploration.

Sample 77115, collected by astronauts Gene Cernan and Harrison Schmitt at Station 7 during their third and final moonwalk, records a single melt-forming event about 3.83 billion years ago. Sample 73217, retrieved at Station 3 during the astronauts’ second moonwalk, preserves evidence for at least three distinct impact melt-forming events occurring between 3.81 billion years ago and 3.27 billion years ago. The findings suggest that a single small sample can preserve multiple generations of melt products created by impact events over the course of billions of years.

“Our results emphasize the need for care in how we analyze samples in the context of impact dating, particularly for those samples that appear to have complex, polygenetic origins. This applies to both the samples that we currently have in our lunar and meteoritic collections, as well as samples that we recover during future human and robotic space exploration missions in the inner solar system,” says Mercer.


Image caption: Photomicrograph of a petrographic thin section of a piece of a coherent, crystalline impact melt breccia collected from landslide material at the base of the South Massif, Apollo 17 (sample 73217, 84). Different mineral and lithic clasts, as well as impact melt phases are evident. Determining the ages of different melt components in such a complex rock requires carefully focused analyses within context of spatial and petrographic information such as this. In their article published in the Feb. 12 issue of Science Advances, Mercer et al. used the laser microprobe 40Ar/39Ar technique to investigate age relationships of three of the distinct generations of impact melt shown in this image.

Credit: Brad Jolliff, Washington University in St. Louis.

(Nikki Cassis)