News and Updates

07/20/2012

New publication includes essay by Professor Jim Bell

On July 19, the American Academy of Arts and Sciences released a new volume of the journal Daedalus, titled “Science in the 21st Century,” in which 10 prominent scientists explore emerging advances in their fields and respond to the question, “What secrets will science unlock in the coming decades?”

Among the essays included in the volume is: “The Search for Habitable Worlds: Planetary Exploration in the 21st Century,” by Professor Jim Bell.

In “The Search for Habitable Worlds: Planetary Exploration in the 21st Century,” astronomer and planetary scientist Jim Bell foresees huge breakthroughs within the coming decades in the quest for life-supporting environments beyond Earth. He notes that recent discoveries of organisms able to thrive in environments previously believed too harsh to support life–miles below the ocean’s surface and deep in the Earth’s crust, for example–broaden the possibility that habitable environments exist on other planets. Planetary scientists, Bell writes, have “a list of the ‘greatest hits’ destinations” within our own solar system that will be observable through “more capable (and complex) human exploration.”

Print and Kindle copies of the Summer 2012 Daedalus can be ordered at: http://www.amacad.org/publications/daedalus/12_summer_cover.pdf
 

07/19/2012

ASU-led team to use cloud platform to deliver drought information to aid risk management

Droughts are more than simply climate phenomena. They can have profound social, environmental, and economic impacts and can also be a major threat to food security throughout the world. Though much progress has been made in monitoring droughts and understanding their causes, there is still a strong need for better precision in both the monitoring and forecasting of droughts. A team lead by Arizona State University researchers seeks to enable the move from a reactive to a more proactive approach to droughts by developing new capabilities to conduct global drought monitoring using satellite detection of water stress and hydrologic models applied at regional scales.

Under the direction of ASU hydrologist Enrique Vivoni, a contingent of ASU researchers is leading a group from NASA Ames, California State University at Monterey Bay and a non-profit research and development organization known as Planetary Skin Institute (PSI) in integrating multi-resolution, remote sensing-based drought indices into an online, cloud computing-based visualization platform.

Vivoni’s research group was selected for a NASA project in the Earth Science Applications: Water Resources competition, which specifically sought projects able to leverage NASA capabilities to advance their skill to monitor, identify, assess, predict, and respond to water resource deficits. The NASA project led by the ASU team will build on a concept prototype seeded by PSI.

“ASU’s portfolio of earth and space research has enabled us to compete at NASA for new efforts in the application of hydrologic remote sensing and informatics,” explains Vivoni, an associate professor in ASU’s School of Earth and Space Exploration. “We are really excited to be leading a multi-institutional project to develop drought monitoring tools. These will have applications in semiarid regions with large agricultural regions across the world, including in Arizona.

“We have selected to use a water stress index to conduct drought monitoring specifically in drought-prone areas of northwest Mexico and northeast Brazil given their critical importance,” adds Vivoni. “To do so, we will expand the capabilities of a cloud-based geospatial platform to incorporate drought products using remote sensing data and hydrologic model outputs. We hypothesize that the cloud-based platform will be a game-changing approach for drought monitoring, assessment and prediction at a range of scales.”

Teji Abraham, chief development officer for PSI considers “the drought products from this project very complementary and important for the Open Innovation program that PSI is partnering with Brazil's Ministry of Science, Technology, & Innovation – especially for timely risk management given the propensity of drought in northeast Brazil. In collaboration with this group of partners, PSI also intends to extend this new approach in the future to other countries in Asia and Africa that are particularly susceptible to drought.”

Drought Products
The drought products will be spatial maps provided approximately every two weeks that will show drought severity over the two countries of interest (Brazil and Mexico) at high resolution (4 to 8 kilometers) and over the globe at lower resolution (16 to 32 km). The drought maps will be derived from satellite remote sensing observations, specifically the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on board the Earth Observing System Aqua and Terra satellites. These will be complemented with auxiliary data such as irrigation sectors, river basins, stream networks, reservoirs, political boundaries, temperature and precipitation, among others.

This data will be integrated into a cloud-based platform, called Drought ALERTS (short for Automated Land change Evaluation, Reporting and Tracking System). This global visualization system will overlay standard maps with scientific products related to natural resources management for near real-time global detection of water stress at multiple resolutions.

Targeted at national water managers, irrigation districts, policymakers and scientific communities, Drought ALERTS is designed to engage stakeholders and decision-makers in local to regional problems concerned with natural resources and risk management and will provide timely detection of drought events on a global basis with a high degree of accuracy.

“This innovative platform will utilize remote sensing products from low-Earth orbiting satellites to produce drought indices. It will help form the basis for resource allocation decisions and it will be refined over time as we find ways to make it better reflect the needs of decision-makers and others who use the information,” says Vivoni.

“PSI sees this as an important step forward in globally scaling drought monitoring capabilities. In partnership with PSI’s regional partners, we expect this project to help bridge the gap between scientists and decision makers by integrating drought data products into a decision planning environment that enables the data to be analyzed in context for making holistic decisions,” adds Abraham.

Current drought monitors, such as the US drought monitor, rely on assembling precipitation data from rain gauges throughout a region about once every week. The US drought monitor is a great resource that has improved US-based efforts with respect to what was available even five years ago; however, this can lead to large errors in developing countries as instrument networks there are sparse or inconsistent. Remote sensing products provide an alternative view of drought by making inferences based on vegetation status and land surface temperature.

Drought ALERTS, and similar products, could serve as the backbone of national drought monitoring in many developing countries to improve drought detection, awareness and decision-making capabilities. For example, the study areas in northwest Mexico and northeast Brazil are currently undergoing severe multi-year droughts affecting agricultural production. These advances can yield significant cost savings through reduced risks across several water demand sectors including food production and security, hydropower generation, and natural ecosystem services.

End Users
The end users will range from local to country-level decision makers that are involved in water, land and natural resources management. Vivoni and his collaborators have partnered with a large irrigation district in Mexico and a federal emergency management agency in Brazil that are interested in drought forecasts.

“The Yaqui Valley Irrigation District in Sonora, Mexico is a major producer of wheat. The Center for Monitoring of Natural Disasters in Brazil is a new agency in charge of nation-wide alerts. Both of these institutions – and others that will join as the program develops – will have access to tailored scientific products related to drought,” explains Vivoni.

Users will be able to query, visualize and plot metrics that explore the different dimensions of drought, including the precipitation and temperature forcing and the vegetation response. Summary statistics, such as drought duration and intensity, will be provided to help them gauge the level of the threat.

Drought monitoring is but the first step in a larger vision. Vivoni intends to expand this drought effort into a hydrological risk monitoring platform that also deals with floods, landslides, erosion potential, etc. to provide a more complete picture of global water excess and water limitations.

“Eventually, the drought monitor will also help our undergraduate and graduate students interact, query and explore real-time remote sensing data that describe changes in the hydrological cycle over their regions of interest. By bringing research products into classroom activities, our student learning experiences will be enriched,” adds Vivoni.

For more information:
ASU Hydrology: http://hydrology.asu.edu
Planetary Skin Institute: http://planetaryskin.org/rd-programs/water/global-drought-monitoring
NASA Applied Sciences Program website: http://appliedsciences.nasa.gov/

Caption: PSI ALERTS, a platform for visualizing natural resources and aiding decisions. Here, ALERTS shows vegetation disturbances derived from 1-kilometer MODIS (gridded maps), the locations of identified disturbances (circles) and Enhanced Vegetation Index (EVI) time series at a disturbance location. Credit: Planetary Skin Institute

 

(Nikki Cassis)
 

07/19/2012

The Arizona Daily Star's Centennial salute to science in Arizona runs all summer. Each day, for 100 days, they'll record a milestone in the state's scientific history. On July 19, Phil Christensen was highlighted for his remote sensing instruments that helped find proof that water once existed on Mars.

Photo credit: CHRIS RICHARDS / ARIZONA DAILY STAR

Read the full story here

07/18/2012

Today, Fox news reporter Kristin Anderson interviewed Professor Jim Bell to discuss ASU's role with NASA's Mars Science Laboratory. You can watch the interview here: http://www.myfoxphoenix.com/story/19054754/mars-rover

If all goes according to plan, Mars Science Laboratory (MSL) rover, dubbed Curiosity, will land at Gale Crater on Mars August 5. Carrying an advanced suite of scientific instruments, the Mini-Cooper-size rover will explore a gigantic “history book” in the form of sedimentary deposits in Gale, seeking evidence of Mars’ past and present habitability.

ASU professors and researchers from the School of Earth and Space Exploration, as well as graduates, are involved in the mission. Professor Meenakshi Wadhwa is a co-investigator with the Sample Analysis at Mars (SAM) instrument, essentially an analytical chemistry system. Amy McAdam, an alumna, is also working on SAM. Professor Jack Farmer is a science team member for a different instrument, CheMin, designed to examine the chemical and mineralogical properties of rocks and soils. And professor Alberto Behar is an investigation scientist for the Russian Dynamic Albedo of Neutrons instrument.

Curiosity’s Mars Hand Lens Imager (MAHLI) also has ties to ASU. MAHLI is mounted on its robotic arm and will make close-up images of Mars rocks to help determine past environmental conditions. Kenneth Edgett, an ASU alumnus, is the principal investigator on the MAHLI team. MAHLI comes from Malin Space Science Systems, a company started and operated by former ASU geological sciences professor Malin. Malin is also the principal investigator for two other MSL cameras, the Mars Descent Imager (MARDI) and Mastcam. And ASU’s professor Jim Bell is an important player regarding the targeting and interpretation of images recovered from all of these camera systems.

Curiosity is scheduled to land on Mars the night of Sunday, August 5, 10:31pm PDT/11:31pm MDT/12:31am CDT/1:31am EDT. The landing will be shown on NASA TV and streamed live at www.nasa.gov/ntv.

07/09/2012

The SESE 2013 Public Outreach geology-oriented Raft Trip through Grand Canyon is scheduled for May 6-13. A flyer with brief information is at: http://www.public.asu.edu/~iaclpk/River%20Trip%20Flyer.htm

Details are at: http://www.public.asu.edu/~iaclpk/Information%20blurb%20May%202011.htm

07/07/2012

The Arizona Daily Star's Centennial salute to science in Arizona runs all summer. Each day, for 100 days, they'll record a milestone in the state's scientific history. On July 7, Ariel Anbar was highlighted for the analytical techniques he and his team developed that have already revealed the changing mix of elements in Earth's ancient past.

Read the full story here

07/05/2012

"The discovery announced today in Geneva represents a quantum leap (literally) in our understanding of nature at its fundamental scale" writes ASU's Lawrence Krauss, ASU Foundation Professor in the School of Space and Earth Exploration and the Department of Physics, in a Future Tense article on Slate.

Krauss explains why scientists are hesitant to announce that they have discovered the Higgs boson, and instead say they’ve found a new particle that is "Higgs-like." Krauss also offers a set of questions that could be answered or deemed obsolete as a result of this discovery.

Krauss, author of “A Universe from Nothing: Why There is Something Rather Than Nothing,” shares a personal interest in this discovery. The role of a Higgs-like particle coincides with his argument that our current understanding of physics allows for the universe to have naturally evolved from nothing.

The article, titled "A Quantum Leap: The discovery of the Higgs boson particle puts our understanding of nature on a new firm footing," can be found at the link below.

 

Photo: The discovery of a new "Higgs-like" particle could have great implications for our understanding of the universe. Photo by: Flickr/ruba

06/28/2012

Six Arizona State University students spent a week in June conducting airborne research in low gravity under the guidance of scientists and engineers at the National Aeronautics and Space Administration’s Johnson Space Center in Houston.

They’re members of the ASU Dust Devils, one of 14 teams of students from universities throughout the United States selected from among more than 60 teams that applied to do experiments as part of NASA’s Reduced Gravity Educational Flight Program.

Each of the teams’ projects required performing experiments in low gravity – or “microgravity” – conditions. The work was done during flights in a modified Boeing 727-200 jet used to train astronauts that is capable of creating microgravity conditions. The aircraft is sometimes called the Weightless Wonder.

Microgravity is the extremely weak gravitational force that is experienced, for example, by people in a spacecraft orbiting the Earth, enabling them to become virtually weightless and to float inside a spacecraft.

Students from the University of Southern California, Yale University, Purdue University, the Massachusetts Institute of Technology, Virginia Polytechnic University and the University of Washington were on some of the other teams conducting the microgravity research.

From dust to solar systems

In flights over the Gulf of Mexico, the Dust Devils were looking at dust electrification and coagulation – how dust particles clump together and bond in low-gravity environments.

Understanding the ways in which dust particles stick together could be important in revealing the fundamental process that allows solar systems and planets to form, says Dust Devils member Amy Kaczmarowski, who graduated in the spring with a degree in aerospace engineering from ASU’s Ira A. Fulton Schools of Engineering.

The team varied the size and composition of dust particles placed inside 12 vacuum chambers containing different combinations of particles of three materials – silica, aluminum and a material believed to be similar to dust on the surface of Mars.

The idea was to examine how varying the size and composition of the particles would affect clumping.

Kaczmarowski carried out experiments with Dust Devil teammates Emily McBryan, a senior aerospace engineering major, Danielle Hoots, a history and anthropology major, team leader and senior Pye Pye Zaw and junior Jacob Higgins, both studying in ASU’s School of Earth and Space Exploration, and junior accounting major Craig Hoots.

As microgravity was achieved on the jet, each vacuum chamber was shaken to unsettle the dust it contained. Cameras monitoring activity in the chambers then recorded the behavior of the dust. Some experiments required multiple flights to complete.

It took some self-discipline for team members to keep focused on the experiment amid the excitement of experiencing microgravity.

“It was an absolutely incredible feeling to be floating,” Kaczmarowski says. “It was difficult to keep steady. I was having a lot of fun,” she says.

Soliciting mission support

The team was able to make the trip to Houston by writing an experiment proposal that earned a grant from the NASA Space Grant program, which supports students studying areas of science, engineering and math with applications to space-exploration endeavors.

Another proposal got the students equipment and additional funding from Kip Hodges, director of the School of Earth and Space Exploration. The team raised more funds for research equipment and travel expenses from family and friends, and from private donors who contributed in response to local news media reports about the Dust Devils’ project.

School of Earth and Space Exploration faculty members Steve Desch, Chris Groppi and Srikanth Saripalli assisted the students.

Associate professor Desch helped design the experiment and provided background on the experiment’s implications for understanding solar-system formation.

Assistant professor Groppi advised them on engineering aspects of the project, including design of research instruments, and on writing of the research proposal and the project budget. Professor Saripalli supplied some computers and computer software.

Learning the art of experimentation

Besides performing experiments, the Dust Devils toured the Johnson Space Center, during which they got a look at a replica of the Space Shuttle Explorer.

“We learned a lot from this experience, from better ways of designing future experiments to make them easier to handle and work with, to learning how to work with different types of people.” Kaczmarowski says.

“We learned a lot about all that it takes to make a scientific experiment. Specifically, we learned how to try to find a compromise between the cost and the engineering feasibility and the scientific objectives. We also learned a lot about vacuum systems and how finicky they can be. It really is an art form,” she says.

“We know we were successful in creating the vacuum system, moving the dust, and collecting images during the flight,” Kaczmarowski says.

Now Danielle Hoots will spend the summer performing the bulk of the analysis of the data collected during the Dust Devils’ experiments.

The team is expected to issue a final report to NASA later this summer on the results of the experiment. The report will analyze the experiment’s effectiveness and scientific findings.

Team leader Zaw will be looking at opportunities to obtain future support from the NASA Space Grant program and working to recruit new Dust Devils members to help carry on the team’s work next year.

Photo: ASU Dust Devil research team members (left to right) Pye Pye Zaw, Emily McBryan and Dani Hoots hold on during a flight of a modified jet that simulates space flight by creating low-gravity conditions. The team participated in a NASA flight program that provided students opportunities to perform scientific experiments requiring “microgravity” conditions. Photo by: Courtesy of NASA

(Joe Kullman and Natalie Pierce)

06/27/2012

Solar flares are nothing to be ignored. They can be signs of the formation of gigantic solar storms that could propel powerful electromagnetic bursts of charged particles from the Sun to collide with our planet’s magnetic field.

The result might be widespread electrical power blackouts across the globe. Large swaths of the wired world would instantly become unwired. Collateral damage could be severe enough to put large segments of the population at risk of being without some life-sustaining resources.

Avoiding such catastrophe may depend in large part on better understanding solar flare behavior and increasing the ability to forecast when flares might signal impending solar superstorms that could have an impact on Earth.

A group of Arizona State University engineering and business students hope to play a role in advancing knowledge about solar flares.

Their Sun Devil Satellite 1 project is aimed at providing the National Aeronautics and Space Administration a small satellite equipped with components designed to help study flares during their formative stages.

Preparing for launch

The venture began in the summer of 2009 after Aaron Goldstein – then a freshman beginning studies in aerospace engineering and aeronautics in ASU’s Ira A. Fulton Schools of Engineering – landed an internship in the satellite systems engineering department of General Dynamics corporation.

His experience there motivated him to organize some fellow undergraduates to enter competition sponsored by the American Institute for Aeronautics and Astronautics. They designed a satellite mission to monitor space weather effects on the Earth’s magnetic field.

The team didn’t win the competition but it did develop a cost-effective satellite design proposal that eventually would be the basis for a joint venture with NASA’s Goddard Space Flight Facility.

A year later, at the start of the fall 2010 semester, Goldstein again gathered fellow students to organize the Sun Devil Satellite Laboratory. Within several months they attracted the attention of a solar science research team at NASA’s Goddard center with their ideas for an earth-imaging satellite. That in turn led to a new effort, the Sun Devil Satellite 1 mission focusing on observation of the Sun.

The mission team has since completed successful preliminary NASA design reviews and is planning to have a satellite built in time for a projected 2015 launch.

The group is developing the Flare Initiation Doppler Imager as the main instrument to be attached to the roughly nine-pound satellite, and is building the platform on which the imager will operate.

If it works as planned, the imager will take rapid-fire photos of the Sun to capture solar flares as they emerge. The data it collects could aid research to predict the intensity of flares and forecast potential impacts on the Earth.

Procuring resources

The project has been not only an engineering effort but a lesson in assembling the resources necessary to sustain an ambitious research and technology development endeavor.

The students have had to embark on some business networking to secure the necessary technology industry support.

Space and rocket systems company Orbital Sciences provided some high-precision instruments for testing satellite components, and mentoring from company engineers.

The Microchip company donated electronic components. SolidWorks provided computer-aided design software. Analytic Graphics (AGI) donated spacecraft design software.

The team’s progress and enthusiasm prompted engineering schools’ administrators and faculty to help find the students lab space and provide mentoring.

Those benefactors included Paul Johnson, dean of the Ira A. Fulton Schools of Engineering, associate dean of student and academics affairs James Collofello, along with Kyle Squires, director of the School for Engineering of Matter, Transport and Energy and Valana Wells, chair of the mechanical and aerospace engineering program.

Additional guidance came from assistant professor Christopher Groppi and professor Srikanth Saripalli in ASU’s School of Earth and Space Exploration.

Support also came through Goldstein’s NASA Space Grant, part of a program that provides paid internships for qualified students pursuing careers in science and engineering fields.

“It’s kind of remarkable what we’re accomplishing, considering it started with a small group of people who just thought it might be interesting to try to build a little satellite,” he says.

Facing real-world challenges

Goldstein’s first student internship with General Dynamics turned into an internship with Orbital Sciences when in 2010 Orbital acquired the General Dynamics department in which he was interning.

He continued the internship at Orbital throughout his undergraduate years at ASU, and after graduation this spring was hired full time to work in the company’s systems engineering department, supporting its satellite technology operations.

Goldstein wants to use his experience in satellite and electronics design to someday start his own aerospace and electrical engineering design company.

Since the start of the Sun Devil Satellite 1 project, he estimates that more than 70 ASU engineering students have made at least some small contribution to the effort, but a group of 12 have been the prime movers.

One of them, senior aerospace engineering major Christopher Kady, says the satellite lab has provided him and fellow project members with invaluable experience in applying classroom lessons to real-world engineering challenges.

Kady is leading work on the satellite’s attitude-control subsystem, which enables the satellite to rotate in space and position itself appropriately to view its target – in this case, the Sun.

Cady and Goldstein exhibited the lab’s work on the system earlier this year at the Massachusetts Institute of Technology’s Interplanetary CubeSat Workshop. (A CubeSat is a miniature satellite designed to gather research data in space.)

Goldstein plans to stay on with the project as its primary industry adviser at least until the Satellite 1 launch by NASA.

By that time, he says he hopes the Sun Devil Satellite Laboratory will be taking on new challenges and establishing ASU as a center of student-led satellite research and development.

(Joe Kullman)

06/25/2012

Adults Night Out (18 and older)
Friday, July 6, 7-8 p.m.
Arizona Science Center (600 E. Washington Street, Phoenix)
Campus: Off-campus
Cost: Free

Presentation
What Have We Learned About Earth’s Closest Planet Neighbor, Mars?”
This visual tour of our solar system focuses on recent findings about Mars through the wealth of data provided by spacecraft in the past decade. New and exciting discoveries paint Mars as an active and potentially habitable world.

Speaker
Christopher Edwards is a doctoral candidate in the School of Earth and Space Exploration at Arizona State University, who will begin postdoctoral research at the California Institute of Technology in the fall. During nine years at ASU, he has worked to characterize the early history of Mars using infrared spectroscopy from orbiting spacecraft and the Mars Exploration Rovers. In efforts to understand data gathered from spacecraft and land rovers on Mars, he has built a laboratory infrared spectrometer, used Earth-based Mars analogs and Earth-orbiting satellites. His field observations have taken him to sites in the western United States, Hawaii, Spain and the Himalayan mountains of Bhutan.

For more information
Website: http://www.azscience.org/adults_night_out.php