News and Updates


SESE team starts the complex process of designing a CubeSat that will orbit the Moon.

Building a spacecraft can be surprisingly simple. You can buy a kit off the Internet for about the cost of a used car and make something that will function in orbit around the Earth for a few weeks or months.

Building a NASA flight-quality spacecraft that can fly millions of miles across the void of space to another planet is much more difficult, and the process is far different than building anything else most people are familiar with.

Arizona State University’s team leading a 2018 Moon mission kicked off their first group meeting this month, but it will be years before you can see parts on a table in a lab.

The mission is unique: Build and fly a cutting-edge nanosatellite smaller than a piece of carry-on luggage to the Moon, orbit around the poles 141 times during 60 days while sniffing for hydrogen, transmit what it finds back to Earth, and then, having done its job, crash (be “disposed” of, in NASA parlance) into the south pole.

Its job is part of NASA’s hunt for water on the Moon. And the reason for the search is simple: If ice is discovered on the Moon, water wouldn’t have to be hauled from Earth. And ice can be used for rocket fuel or to support a human push out into the solar system.

The Lunar polar Hydrogen Mapper, or LunaH-Map, will be a CubeSat, a miniature satellite built to a standardized size and volume. One unit is about the size of a large Rubik’s cube. LunaH-Map will be the size of six of those put together — a 6u, in space-systems terminology.

“It’s a little mini spacecraft,” said Craig Hardgrove, principal investigator of the mission. Hardgrove is a postdoctoral research associate in the School of Earth and Space Exploration in the College of Liberal Arts and Sciences.

 While a CubeSat is tiny and designed to do one simple mission, it’s also complex. Building a huge interplanetary spacecraft with tons of money is in many ways simpler than what Hardgrove and his team are doing. In a big beast, you have space to put in components and systems, for one, and you can build in lots of redundancy if something fails. And a ton of money means a ton of personnel experienced in aerospace and space-systems engineering.

For LunaH-Map, there’s not very much of either space or money.

“This project with LunaH-Map is unprecedented in its scale — on the tiny end of the scale,” said co-investigator Jim Bell, an astronomer, planetary scientist, professor in the School of Earth and Space Exploration and veteran of nine NASA missions.

“You start building a small spacecraft the way you begin building a large spacecraft: you look at what’s been done in the past and figure how to leverage what’s already there,” Hardgrove said. “It’s a bit like saying we know how to build a car. Now we want to build a tiny car. Or a car to drive around the Moon.”

Off the shelf?

CubeSat references almost always include the phrase “off-the-shelf commercial components.” While you won’t find everything you need for a CubeSat at Radio Shack, there are manufacturers offering every part from solar panels to power systems. The problem is, they just aren’t built for deep space.

There are four main problems an off-the-shelf CubeSat can’t handle that the LunaH-Map must overcome:

• The usual CubeSat lifetime is days or weeks. LunaH-Map has to survive for months.
• The Earth’s magnetic field shields low-Earth-orbiting craft from electronics-damaging radiation. Interplanetary spacecraft have to be built with tougher electronics.
• Earth-orbiting CubeSats just float around where they were delivered. The LunaH-Map has to propel itself across the void of space and make course corrections.
• Communication with Earth-orbiting CubeSats is pretty simple. Interplanetary CubeSats need to communicate across a much larger distance.

The team doesn’t have to start completely from scratch, however. CubeSats, which began as teaching exercises in engineering classes, have been around for 10 years now. Propulsion, control boards, antennae, radiation-hardened parts, everything you’d see on a normal spacecraft has been miniaturized down through engineering designs done over the past decade in education.

Smartphone tech has been a huge contributor to the field, too. One commercial space company is using the processors found on iPhones in its CubeSats. One of the things that come out of smartphones is reliability.

“They need to make millions and millions of them, and they need to make sure they don’t fail,” Hardgrove said. “A by-product of making things that don’t fail is that you make them radiation-tolerant. They weren’t doing that at all, but that’s a by-product of doing that. ...

“So you can use some components that are off a shelf like that because they’ve been developed in such a way that they are mass-manufactured and mass-marketed. By no means can you buy your spacecraft at Radio Shack, but certain things.”

Scientists are discovering that some cameras can be radiation-tolerant for months in space. Another factor in designing spacecraft is where they’re going and what they’re doing.

“It depends on the length of your mission and where you’re going,” Hardgrove said. “Are you going to the Van Allen belts? Is it going to be a yearlong mission to the Moon, where you’re exposed to galactic cosmic rays for a long time? There are nuances to it.”

The concept of 'heritage'

A layman browsing web pages of private space companies ranging from propulsion manufacturers to launch brokers will often come across the word “heritage” in their copy. The concept of heritage in space-systems engineering bears some explanation. Bell explains it well in his book “Postcards From Mars.” There’s a NASA saying, “It doesn’t fly unless it’s already flown.” What that means is using tried and true engineering, materials and systems.

It’s a lot like planning a serious wilderness expedition. You don’t want to buy the latest gadgets from the outfitters because they might fail in the middle of nowhere, leaving you in serious trouble. You want your grandfather’s hunting knife, those old German binoculars and the stove that’s maybe a little heavy but never, ever fails.

“We have gone for components and subsystems that have a track record, most importantly,” said Jekan Thanga, mission co-investigator and chief engineer. Thanga,Thanga is also an assistant professor in the School of Earth and Space Exploration. a space-systems engineer, heads the Space and Terrestrial Robotic Exploration Laboratory at ASU. “That’s how we get evaluated. You get really dinged if you go for brand-new technology that’s developed in-house and unproven. ... You want something ideally with heritage that’s already flown.”

Even though some of the LunaH-Map will be new, the team will pull heritage where they can in designing the spacecraft.

“Absolutely,” Bell said. “That’s how you lower risk.”

“You can’t call this a heritage mission because it’s unique and very different,” Hardgrove said. “But I think we want to build on as much experience in terms of people as we can.”

The spacecraft’s propulsion system may be a pulse plasma thruster or an ammonia-based system widely used on satellites in the 1960s. The high-performance propulsion systems aren’t ready for CubeSats, according to Thanga.

“These are past-their-prime technologies,” he said. “More refined technologies took over ... these are now in the history books. ... That’s one of our internal philosophies we’ve been using: to not go for sci-fi stuff. It’s stuff that’s fundamentally proven, that’s already been used in space, but has passed its prime so to speak in the mainstream world of space.”

MarCO and the test run

Thanga likes to describe building the LunaH-Map as “a different problem domain.”

“It’s relearning stuff,” he said. “In some ways it is like doing this for the first time. What’s going to set the big precedent is MarCO.”

MarCO (an abbreviation of Mars Cube One) is a technology demonstration of two CubeSats flying on the next Mars mission in 2016. They will be pioneering CubeSats, both the first to leave Earth orbit and the smallest objects ever to fly across deep space to another planet.

The Insight mission will consist of two CubeSats and a lander. They’ll be launched on an Atlas V rocket, be deployed into space and then, like three siblings walking to the bus stop, fly separately to Mars.

The CubeSats will relay radio signals from the stationary lander deployed to the Red Planet’s surface, confirming a successful landing. Chief engineer on the mission is Jet Propulsion Laboratory engineer Andy Klesh, an adjunct professor at the School of Earth and Space Exploration and a member of the LunaH Map team.

“In the CubeSat world, heritage right now means mostly lower-Earth orbit,” Thanga said. “There’s maybe one or two CubeSat missions that have gone to geostationary orbit. That’s all. Nothing beyond, except what will come out of MarCO, and that’s going to be one of those ‘Hold still and see what happens’ moments. It’s going to give us some lessons learned. We may be in for a surprise.”

LunaH-Map’s proposed radio is going to Mars on the MarCO mission. That fact illustrates the key word to describe the entire building process: fluidity.

“It’s a test of our radio, but it’s on a different CubeSat,” Hardgrove said. “We’ll be able to see what worked, what didn’t work, what do we need to change next year. So there’s this idea of future heritage. ... We’ll be able to change course. Some element of our system is going to fly.”

Everyone is rolling the dice on MarCO to see what happens.

“What I would say is the MarCO mission has a lot riding on it to set the stage,” Thanga said.

On a problem this constrained, any solution is viable, Bell said.

“We’ll look at anything,” he said. “If it fits in that space, we’ll consider all options. It’s kind of a fun problem that way.”
Building a team

Assembling the right mission team is critical. The LunaH-Map team consists of people from ASU, quasi-governmental organizations like JPL, and private-sector businesses. Hardgrove wants to be subjected with as much criticism as possible.

“You don’t want to be bombarded with it, but at the same time it helps to have people who are used to a typical model of how to build a spacecraft and they’re going to say, ‘Don’t do this; don’t do that,’” he said. “I absolutely welcome that. I want people to say, ‘This isn’t going to work for this reason.’ ”

The total mission budget is about 10 percent of the cost of one instrument for a big NASA spacecraft. It’s about 1 percent of the cost of a NASA mission, according to Jim Bell.

“What you want to do to put together a team is to find the most experienced people, people who have built spaceflight hardware before, who understand NASA flight procedures and flight requirements and risk assessments and budgeting and flight hardware handling, paperwork, and experience,” Bell said. “That’s what you’d like to do. But for 1 percent of the budget we can’t afford any of those people. So what we try to do instead is cobble together a group of people who have the relevant experience but don’t need to be fully funded off this project.”

Faculty members fall into that description. They’re paid to teach by the university and to do a little research, and LunaH-Map falls into that category. About a dozen students will be involved on the mission in various ways, too.

“We can’t afford an aerospace workforce, but the next best thing we can do are students because, bless their souls, they’re cheap,” Bell said. “They’re also really good. One of the great things about having an 80,000-plus student body at ASU is that that is a big Gaussian bell curve of capabilities.”

Some of the private-sector team members are paid consultants. Others are colleagues interested in the educational component, for possible future hires. The small businesses working on LunaH-Map know how to build things like sensing monitors or propulsion systems. They just might not have thought of how to build a little version.

“We are closely tied with a lot of small businesses,” Thanga said. “Many of these entities will be critical to success. It could not have been done alone and at ASU. … KinetX and their crack team were critical in coming up with trajectory.”

KinetX Aerospace is an engineering, technology, software-development and business-consulting firm providing systems, hardware and software engineering, and satellite and space-vehicle navigation.

That’s part of the mission as well. The mission poster states: “By partnering with small businesses, LunaH-Map will demonstrate the potential of low-cost planetary exploration for scientific discovery, scouting and resource utilization.”

“My mentality going into this is to leverage as much as has been done before,” Hardgrove said.


Although every other aspect of the process will be fluid, spacecraft development follows a pre-defined plan. NASA will review LunaH-Map periodically. A mission can end at a review.

“It’s go/no-go at each of these steps,” Thanga said.

“It’s no-go unless you address this (issue), not necessarily the cancellation of the project,” Bell explained.

Or go, and accept risk.

“For 1 percent of the cost of a NASA mission, we have to accept a lot of risk,” Bell said. “We have no choice. That’s just fundamentally built into the architecture of these missions.”

First there will be an internal mission concept review. Following that will be a requirements review, which will have NASA in on it. A preliminary design review (PDR) will be held around June 2016. (“PDR is getting there,” Thanga said.)

A critical design review (CDR) held around December 2016 will kick off construction. That’s when you will start seeing parts on a table.

“You formally start building after CDR, then it’s build, build, build,” Thanga said.

It’s also test, test, test. There are two ways of writing code. Write your code first and compile it, then debug it — or, as you add every new line of code, test it. “Chances are we’ll be doing a mix of those methods,” Thanga said.

That is not done with hardware because it’s too risky and expensive. Space systems don’t come cheap. There are suppliers, but Home Depot is not one of them.

“In our case we will build up slowly,” Thanga said. “You operate as you should and then suddenly one of the capacitors blows and that’s it. You’re done. ... It’s not as easy to go back to the manufacturer and say, ‘Hey, your board blew up. Can we get another one?’ It’s a big-ticket item. It gets a little hairy that way.”

An integration review is followed by a final readiness review, then a delivery review. After that, LunaH-Map will go into space.

Ideally, LunaH-Map will discover ice on the Moon. If it fails in some way, it will still be a success, Bell said.

“Part of what we’re doing is entirely educational,” he said. “Part of what we’re doing is training this generation of students, giving them hands-on experience building things, designing things, testing them, launching them, operating them in space. If our scientific mission is not successful, but we’ve been successful in that educational mission, that’s a partial win.”

Written by Scott Seckel


Earth’s deep interior transport system explains volcanic island lava complexities.

The journey for volcanic rocks found on many volcanic islands began deep within the Earth. Brought to the Earth’s surface in eruptions of deep volcanic material, these rocks hold clues as to what is going on deep beneath Earth’s surface.

Studies of rocks found on certain volcanic islands, known as ocean island basalts, revealed that although these erupted rocks originate from Earth’s interior, they are not the same chemically.

According to a group of current and former researchers at Arizona State University, the key to unlocking this complex, geochemical puzzle rests in a model of mantle dynamics consisting of plumes – upwelling’s of abnormally hot rock within the Earth’s mantle – that originate in the lower mantle and physically interact with chemically distinct piles of material.

The team revealed that this theoretical model of material transport can easily produce the chemical variability observed at hotspot volcanoes (such as Hawaii) around the world.

“This model provides a platform for understanding links between the physics and chemistry that formed our modern world as well as habitable planets elsewhere,” says Curtis Williams, lead author of the study whose results are published in the Nov. 24 issue of the journal Nature Communications.

Basalts collected from ocean islands such as Hawaii and those collected from mid-ocean ridges (that erupt at spreading centers deep below oceans) may look similar to the naked eye; however, in detail their trace elements and isotopic compositions can be quite distinct. These differences provide valuable insight into the chemical structure and temporal evolution of Earth’s interior.

“In particular, it means that the Earth’s mantle – the hot rock below Earth’s crust but above the planet’s iron core – is compositionally heterogeneous. Understanding when and where these heterogeneities are formed and how they are transported through the mantle directly relates to the initial composition of the Earth and how it has evolved to its current, habitable state,” said Williams, a postdoc at UC Davis.

While a graduate student in ASU’s School of Earth and Space Exploration, Williams and faculty members Allen McNamara and Ed Garnero conceived a study to further understand how chemical complexities that exist deep inside the Earth are transported to the surface and erupt as intraplate volcanism (such as that which formed the Hawaiian islands). Along with fellow graduate student Mingming Li and Professional Research Associate Matthijs van Soest, the researchers depict a model Earth, where in its interior resides distinct reservoirs of mantle material that may have formed during the earliest stages of Earth’s evolution.

Employing such reservoirs into their models is supported by geophysical observations of two, continent-sized regions – one below the Pacific Ocean and one below parts of the Atlantic Ocean and Africa – sitting atop the core-mantle boundary.

“In the last several years, we have witnessed a sharpening of the focus knob on seismic imaging of Earth’s deep interior.  We have learned that the two large anomalous structures at the base of the mantle behave as if they are compositionally distinct. That is, we are talking about different stuff compared to the surrounding mantle. These represent the largest internal anomalies in Earth of unknown chemistry and origin,” said Garnero.

These chemically distinct regions also underlie a majority of hotspot volcanism, via hot mantle plumes from the top of the piles to Earth’s surface, suggesting a potential link between these ancient, chemically distinct regions and the chemistry of hotspot volcanism.

To test the validity of their model, Williams and coauthors compare their predictions of the variability of the ratios of helium isotopes (helium-3 and helium-4) in plumes to that observed in ocean island basalts.

3He is a so-called primordial isotope found in the Earth's mantle. It was created before the Earth was formed and is thought to have become entrapped within the Earth during planetary formation. Today, it is not being added to Earth’s inventory at a significant rate, unlike 4He, which accumulates over time.

Williams explained: “The ratio of helium-3 to helium-4 in mid-ocean ridge basalts are globally characterized by a narrow range of small values and are thought to sample a relatively homogenous upper mantle. On the other hand, ocean island basalts display a much wider range, from small to very large, providing evidence that they are derived from different source regions and are thought to sample the lower mantle either partially or in its entirety.”

The variability of 3He to 4He in ocean island basalts is not only observed between different hotspots, but temporally within the different-aged lavas of a single hotspot track.

“The reservoirs and dynamics associated with this variability had remained unclear and was the primary motivation behind the study presented here,” said Williams.

Williams continues to combine noble gas measurements with dynamic models of Earth evolution working with Sujoy Mukhopadhyay (Professor and Director of the Noble Gas Laboratory) at the University of California at Davis.

The School of Earth and Space Exploration is a unit of ASU's College of Liberal Arts and Sciences.

Written by Nikki Cassis


ASU scientist Ariel Anbar helped lead research team solving the puzzle of Earth’s Great Oxidation Event

Earth's oxygen-rich atmosphere emerged as transient “whiffs” in shallow oceans around 2.5 billion years ago, according to new research from Canadian and US scientists.
These whiffs of oxygen likely happened in the following 100 million years, changing the levels of oxygen in Earth’s atmosphere until enough accumulated to create a permanently oxygenated atmosphere around 2.4 billion years ago – a transition widely known as the Great Oxidation Event. 
“One of the questions we ask is: ‘Did the evolution of photosynthesis lead directly to an oxygen-rich atmosphere? Or did the transition to today's world happen in fits-and-starts?" said Ariel Anbar, President's Professor in Arizona State University’s School of Earth and Space Exploration (SESE) and the School of Molecular Sciences (SMS). “How and why Earth developed an oxygenated atmosphere is one of the most profound puzzles in understanding the history of our planet.”
The findings are presented in a paper published this month in Science Advances from researchers at University of Waterloo, University of Alberta, Arizona State University, University of California Riverside, and Georgia Institute of Technology. The team presents new isotopic data showing that a burst of oxygen production by photosynthetic cyanobacteria temporarily increased oxygen concentrations in Earth's atmosphere. 
“The onset of Earth's surface oxygenation was likely a complex process characterized by multiple whiffs of oxygen until a tipping point was crossed,” said Brian Kendall, a professor of Earth and Environmental Sciences at the University of Waterloo, who led the study. “Until now, we haven’t been able to tell whether oxygen concentrations 2.5 billion years ago were stable or not. These new data provide a much more conclusive answer to that question.”
Kendall was a visiting student, postdoctoral fellow, and faculty research associate at Arizona State University from 2006-2012, where he worked with Anbar.
The new data support a hypothesis proposed by Anbar, Kendall, and other collaborators in 2007. In Western Australia, they found preliminary evidence of these oxygen whiffs in black shales deposited on the seafloor of an ancient ocean.
The black shales contained high concentrations of the elements molybdenum and rhenium, long before the Great Oxidation Event. These elements are found in land-based sulfide minerals, which are particularly sensitive to the presence of atmospheric oxygen. Once these minerals react with oxygen, the molybdenum and rhenium are released into rivers and eventually end up deposited on the sea floor.
In the new paper, the researchers analyzed the same black shales for the relative abundance of an additional element: osmium. Like molybdenum and rhenium, osmium is also present in continental sulfide minerals. The ratio of two osmium isotopes – 187Os to 188Os – can tell us if the source of osmium was continental sulfide minerals or underwater volcanoes in the deep ocean.
"The osmium isotope evidence for increased continental sources directly correlated with higher molybdenum and rhenium concentrations in the shale", said Professor Robert Creaser of the University of Alberta, a coauthor of the study and whose lab carried out the new analyses. "By comparison, black shales with lower molybdenum and rhenium concentrations had osmium isotope evidence for less continental input. These correlated changes are best explained as reflecting changes in the O2 content of the atmosphere." 
The paper’s authors also include Professor Timothy Lyons from the University of California Riverside and Professor Chris Reinhard from the Georgia Institute of Technology. 
Both the School of Earth and Space Exploration and the School for Molecular Sciences are units in ASU's College of Liberal Arts and Sciences.

Geology guidebook co-edited by Steve Semken wins publishing award. 

Associate Professor Steven Semken of Arizona State University's School of Earth and Space Exploration (SESE) is a co-editor of a geology guidebook that has been given an award for excellence in geoscience publishing by the Geoscience Information Society (GSIS) at its annual meeting in Baltimore.

The book is Geology of Route 66 Region: Flagstaff to Grants. It is a guide to the geology, history, art, and archaeology of northern Arizona and western New Mexico. Maps, road logs, and a mix of scientific and popular articles add to the work's appeal for many audiences. The book was published by the New Mexico geological society in 2013. The other editors are Kate Zeigler, J. Michael Timmons, and Stacy Timmons.

The award was accepted by Semken, an ethnogeologist and geoscience education researcher at SESE, a unit of the College of Liberal Arts and Sciences.

The Best Guidebook Award was established by GSIS to recognize and promote excellence in this important type of geoscience literature.

The Geoscience Information Society is an international professional organization devoted to improving the exchange of information in the earth sciences.  The membership consists of librarians, editors, cartographers, educators, and information professionals. Information about the Society may be found at its website

Written by Karin Valentine


ASU and UNC researchers to study thermonuclear reaction rates to determine how much of certain elements exploding stars can produce


We are all made from stars. And that’s not just a beautiful metaphor.

Apart from hydrogen, as many have heard from the Carl Sagan and Neil DeGrasse Tyson Cosmos series, every ingredient in the human body is made from elements forged by stars.

The calcium in our bones, the oxygen we breathe, the iron in our blood – all those are forged in the element factories of stars. Even the carbon in our apple pie.

Stars are giant element furnaces. Their intense heat can cause atoms to collide, creating new elements – a process known as nuclear fusion. That process is what created chemical elements like carbon or iron – the building blocks that make up life as we know it.

It sounds pretty simple, but it is a very intricate process. And there are still many uncertainties.

Professors Sumner Starrfield and Frank Timmes, both from Arizona State University, and Professor Christian Iliadis, from the University of North Carolina at Chapel Hill, hope to resolve some of those uncertainties.

“Broad brush we have a good idea that massive stars become one kind of supernova and binary stars with white dwarfs become another type of supernova. We know a lot about what may have caused the explosions but there are many unexplained parts that need to be worked out,” said Starrfield, Regents' Professor in ASU’s School of Earth and Space Exploration.

The team was awarded a NASA grant of nearly $700,000 to better understand how supernovae evolve to an explosion. The study is aimed at determining how much of certain elements a star can produce.

Inside these element factories, how much carbon for our apple pies gets made, how much calcium is available to make our bones, depends on their nuclear reaction rates.

For example, as shown in the recent movie “The Martian”, if you were trying to make water, you would take hydrogen and oxygen and some energy and put it together in a container and it would make water at a certain rate depending on the temperature of the container. Add more heat, and the reaction speeds up, producing more water.

A similar thing happens inside stars – except it’s nuclear reactions releasing a factor of one million times more energy than a chemical reaction. Stars run on nuclear reactions. Smash together a carbon nucleus and a helium nucleus inside the furnace of a star, and out pops the oxygen we breathe. Speed up that reaction, and the star yields more oxygen.

Researchers use computers and solve equations to predict how a star evolves. Part of that input into how stars evolve are nuclear reaction rates. One set rate has been used to arrive at an estimate of how much of a certain element a star can produce. But is that number optimal? Is it some super optimistically high value, or it pessimistically low?

“What we will define is a meaningful range, given the uncertainties of what is measured here on Earth, of what actually comes out. At the end of the day, what we are going to know is the variation – how much variation is there in a star’s output. How much calcium or carbon comes out of the star?” said Timmes, an astrophysicist in ASU’s School of Earth and Space Exploration.

Investigating the range of elements that a star can produce is based on what is measured in the terrestrial laboratory. This is where nuclear physicist Iliadis, who recently published a textbook on the nuclear physics of stars, fits in; he’s the experimentalist providing the data on the nuclear fusion reaction rates and their uncertainties.

“It is not quite "The power of the Sun, in the palm of my hands", as muttered by Dr. Octavius in Spiderman 2; nevertheless we do measure with our accelerator facilities the very same nuclear fusion reactions that occur in stars,” said Iliadis.

But uncertainties are inherent in lab measurements. What you want to do is connect what you do in the lab with what you see in the night sky. And that’s Starrfield’s contribution – he’s an expert in dead and dying suns. He will use the reaction rates from Iliadis in new calculations of how different types of stars can become supernovae.

This proposal ties in a tight loop experiments done here on earth with observations in the night sky. For over two decades Timmes has been doing modeling of stars; the models he creates will serve as the glue between what is measured on earth by Iliadis and what is seen in the dark night sky by Starrfield.

The team is going to be checking roughly 50 of the most important nuclear reaction rates for producing elements that form the building blocks of life as we know it. And just as important, some of these reaction rates are useful in nuclear fusion experiments to produce clean power on Earth.

As a star ages, hydrogen and then helium nuclei fuse to form heavier elements. These reactions continue in stars today as lighter elements are transformed into heavier ones.

Late in life, most stars will explode, ejecting the elements they forged into interstellar space. If a star is heavy enough, or has a close companion, it will explode in a supernova that creates many heavy elements including iron and nickel. The explosion also disperses the different elements across the galaxy, scattering the stellar material that will eventually make up planets, including Earth.

Starrfield will compare their calculations with observations of exploding stars and determine the amounts of chemical elements blown into space. “We are the results,” said Starrfield.

Written by Nikki Cassis


Caption: ASU Regent's Professor Sumner Starrfield is a computational astrophysicist who has been studying stellar explosions for more than 30 years using ground-based optical and infrared telescopes as well as space-based telescopes such as the Hubble Space Telescope. In collaboration with colleagues Frank Times of ASU and Christian Iliadis at UNC, Starrfield is studying thermonuclear reaction rates to determine how much of certain elements exploding stars can produce. Credit: Charlie Leight/ASU Now



School of Earth and Space Exploration invites public to day of hands-on science fun   

Saturday, November 7, 2015
9 a.m. to 3 p.m.

TEMPE, Ariz. – The public is invited to spend a day exploring Earth and space with ASU scientists from 9 a.m. to 3 p.m., Saturday, Nov. 7, at the Interdisciplinary Science and Technology Building IV (ISTB 4), at Arizona State University’s Tempe campus. 

The day-long event is designed to inspire the many local kids, parents, educators, and other community members that are intrigued by science.

Earth and Space Exploration Day provides a variety of science-related interactive activities for children age five and up and anyone interested in exploring Earth and space alongside real scientists.

Together families can experience a variety of activities including digging for meteorites and creating impact craters, manipulating robotic arms and driving remote controlled underwater robots, to name a few. For a complete listing of activities, visit:

In addition to the tabletop activities and interactive demonstrations, there will be lab tours, lectures, and opportunities to engage with the kiosk-style exhibits in the Gallery of Scientific Exploration.

Space lovers can look through telescopes and visit a replica of Curiosity Rover, matching the dimensions of the real rover currently on Mars. Several 3-D astronomy shows will be offered at various times in the building’s state-of-the-art, high-definition Marston Exploration Theater.

Meteorite enthusiasts can visit the meteorite display on the second floor, drawn from the extensive collection of ASU’s Center for Meteorite Studies. Visitors can examine touchable samples, engage with interactive displays, and ask staff to inspect potential meteorite specimens.

Rock hounds can bring a rock specimen for ‘Dr. Rock’ to analyze and identify, or take part in a family-friendly geology field trip to “A” Mountain (Hayden Butte) to learn about the sedimentary rocks, volcanic rocks and geological structures exposed in Tempe. The ASU GeoClub will also be selling mineral and rock samples, along with snacks.

Lectures are scheduled throughout the day on topics ranging from space exploration to Earth’s climate.

Attending Earth & Space Exploration Day 2015 is free, but you can help us anticipate the number of people that will attend by pre-registering at Pre-registration also allows a speedy check-in for you and your family.

This will be the 18th year that faculty and students in the School of Earth and Space Exploration in ASU’s College of Liberal Arts and Sciences have sponsored the event and used it as a means of connecting the community with science.

For more information, visit:


The breathtaking possibility that they may have found an object that fell to Earth from millions of miles out in space will draw hundreds to the one-day-only meteorite-identification event at Arizona State University’s Earth and Space Exploration Day next month.

The crushing probability that it isn’t will be mollified by the opportunity to view the Meteorite Gallery’s spectacular collection at the annual event on Saturday, Nov. 7.

“Usually one or two turn out to be meteorites,” said Meenakshi Wadhwa, director of the Center for Meteorite Studies. “The probability that any one of them is a meteorite is pretty small.”

Her office voicemail states that the center does not identify potential meteorites on a regular basis.

Despite that, “I still get one or two messages every day asking if they can bring one in,” said Wadhwa, who is also a professor in ASU’s School of Earth and Space ExplorationThe School of Earth and Space Exploration is part of the College of Liberal Arts and Sciences..

The meteorite identification program was suspended five years ago because the center was swamped by requests.

“Most people don’t know what a meteorite is,” said research professor Laurence Garvie, collections manager of the Center for Meteorite Studies. “Not every heavy dark magnetic rock in the desert is a meteorite. It has to be slightly different in a particular kind of way. That’s the thing.”

The desert Southwest is one of the better places to find meteorites because there’s not as much vegetation.

Meteorites fall into two categories: finds and falls. Both are named after where they were found, like Coolidge or Rancho Gomelia or Mayday.

A find is discovered on the ground. A fall is witnessed plummeting to Earth and then retrieved. Falls are much sexier in the meteorite world. The authoritative Meteoritical Bulletin carefully describes the circumstances of the discovery, noting such details as terrified cats and barns full of dust.

Meteorites can be tiny. The center possesses close to a kilogram of the famous Chelyabinsk meteorite, which was recorded by hundreds of cameras as it crashed into the Russian city on Feb. 15, 2013. That meteorite was the size of a Volkswagen bus. Before it shattered in the atmosphere, damaging more than 7,000 buildings and injuring more than 1,500 people, it weighed about 10,000 tons and traveled about 41,000 miles per hour.

“These things are continually hitting the Earth,” Wadhwa said. Fifty to 100 tons hit Earth every day.

Most are dust-size particles. “Meteor showers are not going to drop stuff,” Garvie said.

The center also owns a piece of broken window glass from Chelyabinsk. In the meteorite world, owning a piece of collateral damage as well as the meteorite itself is highly prized.
A 26-pound meteorite fell on Oct. 9, 1992, hitting the trunk of 18-year-old Michelle Knapp’s red 1980 Chevy Malibu in Peekskill, New York. The meteorite was still warm and smelling of sulfur when Knapp went out in the driveway to see what had happened. She sold the car — which she had just bought for $300 — to a meteorite collector’s wife for $10,000 and the meteorite for $69,000. The car has since traveled the world to museums and mineral shows.

Garvie pointed out there is not a black market in meteorites. “That’s a misconception,” he said.

When Wadhwa was curator at the Field Museum in Chicago, a meteorite shower hit the city. People called the police, thinking vandals were throwing rocks at their houses. The police confiscated many of the meteorites. “At the police station they were lined up like suspects,” she said.

Garvie holds out a specimen from Mars that was discovered in Morocco. Martian meteorites are the only materials from other planets ever recovered by humans. The ASU center has about 2,000 different types of meteorites in its 40,000-specimen collection; it’s the world’s largest university-based collection.

“We can learn a lot about planetary processes from them,” Wadhwa said. “That’s the core of a small planet you’re looking at there.”

“Let’s hope we get a meteorite this year,” she added.
Earth and Space Exploration Day

What: This annual event offers special science-related activities for students age 5 and up, families, educators and anyone interested in exploring Earth and space. In addition to the meteorite-identification event, there will be 3-D astronomy shows; special talks on volcanoes, earthquakes and planetary science; and interactive displays in the Gallery of Scientific Exploration. Visitors can also see a replica of the Curiosity Mars rover, explore "A" Mountain (Tempe Butte) on a guided field trip, bring rock samples for Dr. Rock to examine, and much more.

When: 9 a.m.-3 p.m. Saturday, Nov. 7.

Where: Interdisciplinary Science and Technology Building IV (ISTB 4) on Arizona State University’s Tempe campus. Find an interactive campus map here.

Admission: Free. Parking will be free as well.

Details: To register for the event, visit

Written by Scott Seckel


SESE graduate student Marina Foster is the recipient of the J. Hoover Mackin Research Award. This is a Geological Society of America student award affiliated with the Quaternary Geology and Geomorphology Division, established in 1974.

Foster received this very prestigious award for her proposal Role of climate and tectonic in colluvial soil production: Testing the soil production paradigm using observations in uplifted landscapes of California and southeastern Arizona. Her advisor is Professor Kelin Whipple.

Recipients will be recognized at the awards ceremony in Baltimore with a plaque.

Join us on October 23 at our second Earth & Space Open House of the Fall semester. This month's theme is Earthquakes!, featuring a FREE lecture by ASU geology professor, Dr. Steven Semken. The lecture will include both a general discussion on our planet's extensive seismological history and a focused discussion on earthquakes right here in Arizona!

Time: 7-10 p.m.

Location: ASU Tempe campus ISTB4
The FREE lecture begins at 8:15 p.m. in the Marston Exploration Theater.
Before and after the lecture, planetarium shows (in 3-D) will be shown at 7:15 p.m. and 9:15 p.m., also in the Marston Exploration Theater. (Seating is first-come, first served, and the theater will be cleared after each event.)
Telescopes will be set up for sky viewing (weather permitting) from 8-10 p.m. next to the James Turrell Skyscape art installation (follow signs).
As usual, there will be many exciting demonstrations and activities in the state-of-the-art ISTB4 Gallery of Scientific Exploration by experts in astrobiology, geology, cosmology, planetary science, and more! Stop by the Ron Greeley Center for Planetary Studies table for your FREE New Horizons poster.
Please spread the word to your family, friends, and anyone else interested in learning more about Earth and space exploration. All are welcome!
Earth & Space Open House is brought to you by the School of Earth & Space Exploration, Altair Rocketry, AstroDevils: ASU Astronomy Club, Center for Meteorite Studies (CMS), GeoClub, NASA Space Grant, Society of Physics Students (SPS), Students for the Exploration and Development of Space (SEDS), and many other organizations at Arizona State University whose members volunteer their time each month to make this wonderful event possible.

And mark your calendars: Open Houses for the rest of the academic year will be held on February 5, 2016 and April 8, 2016.

Earth & Space Open House website (with maps of ASU and parking)
Hope see you there! 



Today the White House announced the creation of a nationwide “CubeSat competition” that partners high school students with leading universities for the development and operation of small space satellites. The announcement was part of the festivities surrounding White House Astronomy Night on Oct. 19.

The CubeSat competition is being organized by Cornell University and the Museum of Science Fiction in Washington, D.C. Seven universities, including Arizona State University, will be participating partners. ASU’s participation will be led and organized by Jim Bell, director of the ASU Space Technology and Science (“NewSpace”) Initiative, and Ed Finn, director of ASU’s Center for Science and the Imagination.

“The CubeSat competition provides a great opportunity for students to get direct, hands-on experience in space science, engineering and exploration,” said Bell, an ASU professor in the School of Earth and Space Exploration. “Part of our mission is to engage the community, especially young people, in the excitement of science, technology, engineering and mathematics (STEM) topics like space exploration.”

“This contest invites a new generation of explorers, researchers and entrepreneurs to dream big,” said Finn, an assistant professor in the School of Arts, Media & Engineering and the Department of English. “Space has long been a canvas for great stories and grand ambitions, from the Apollo Program to ‘Star Trek,’ and the CubeSat competition gives winners the chance to see their ideas not just realized but launched into orbit.”

In the CubeSat competition, teams of high school students nationwide will propose inexpensive (less than $10,000) CubeSat missions to test technologies or conduct small-scale science experiments in space. Those proposals will be submitted by early 2016 and judged during the spring, with winners announced in summer 2016.

The students will be encouraged, but not required, to reach out to participating universities, NASA Centers or aerospace companies for help with their proposal as they see fit.

CubeSat competition judges will work with participating universities to match up their researchers’ expertise with the best-fit high school proposals (based on geography, research or technology synergies, etc.). It is expected that the universities will develop the technology and engineering solutions needed to make the high school students’ proposals functional and fit for flight.

University researchers and high school students will interact by teleconference, videoconference and email. Some universities might bring students to campus to participate in various aspects of the design and build work. In some cases, university teams may be able to carve off one component of the CubeSat system for the students to work on and then integrate it into the larger system later in the program.

The collaborative high school-university teams will apply for free NASA CubeSat launches through its CubeSat Launch Initiative.

For Bell, the benefits of the competition are both inspirational and real. “The kinds of skills needed to plan, design, test, build and fly a spacecraft mission are directly translatable to a wide variety of careers in STEM and high-tech fields,” he said. “Employers out there want not only book-smart students for these careers, but students who have gotten their hands dirty — literally or figuratively — building real-world mechanical, electrical or even software systems.

“Projects like this provide a great opportunity for practical, pragmatic teaching moments for budding engineers and scientists, as well as great foundational skills in teamwork, critical thinking and problem solving even for students who do not go directly into careers in those fields.”


Read more

The White House announcement.

The Museum of Science Fiction announcement.

Written by Skip Derra