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Discovery in Large Data Sets
Scientific discoveries often come from 
outliers

2Flickr user Klaus



Wagstaff, Lee, and Lanza - ASU SESE 2018 3Brandon Dilbeck



Wagstaff, Lee, and Lanza - ASU SESE 2018 4Ted Hood, State Library of NSW



Wagstaff, Lee, and Lanza - ASU SESE 2018 5



Wagstaff, Lee, and Lanza - ASU SESE 2018

Machine Learning
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Algorithms that learn a concept model from examples

Strengths: 
No need to specify rules  
No need to explain “how”

Expert 
Examples

Training Data

Functional Model 
• Evaluate on new data 
• Interpret results
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Machine Learning for Novelty Detection

DEMUD: Discovery via Eigenbasis Modeling  
of Uninteresting Data 

• Prioritizes interesting observations  
within large data sets 

• Minimizes redundancy in selections  
(models what you already know) 

• Provides explanations for why items are 
chosen
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ChemCam on Mars
• Laser + spectrometer = 

remote composition 
• 5,860 wavelengths 
• 4,238 targets in 707 sols 

• Excludes calibration targets 
and poor-quality data
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ChemCam Observations
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Target: Epworth
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DEMUD’s view of Epworth
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What is this?

[Wagstaff et al., 2014]
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“First fluorine detection on Mars with 
ChemCam on-board MSL”
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[Forni et al., 2014]

What is this?
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Traditional Anomaly Detection
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Traditional Anomaly Detection
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DEMUD Novelty Detection
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Novelty Detection: DEMUD
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• Incremental discovery using  
SVD model of selections 
• Build a model of selected items X  

not the entire data set D 
• Select new items that are  

difficult to represent with the model 
• Explanation = information that is new 
• Update model with each selection 

S
e
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…

Model learns 
along with you
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Discovery in Large Image Data Sets

• PDS Imaging Node: > 1 PB of image 
data
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HiRISE – Mars surface features from orbit 
Credit: NASA/JPL-Caltech/Univ. of Arizona

Human faces 
Credit: Pixabay user Geralt 

Surveillance Planetary Science
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DEMUD for Images
• Representation 

• Raw pixels
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DEMUD for Images
• Representation 

• Raw pixels 
• SIFT [Lowe, 2004]
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DEMUD for Images
• Representation 

• Raw pixels 
• SIFT [Lowe, 2004] 
• Neural network features [Razavian et al., 2014]
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DEMUD + Neural Network 
Representations

Class 
probs
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Image
s

[Wei et al.]

Features
DEMUD
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Explanations with Neural Network Features
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DEMUDFeatures

Selection

4096
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Explanations with Neural Network Features
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DEMUDFeatures

Selection
CNN Feature 

Inversion:  
Predict original image  

with second NN 
(Dosovitskiy & Brox, 2016)

4096

4096
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Explanations with Neural Network Features
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DEMUDFeatures

Selection

Explanation

   ?

CNN Feature 
Inversion:  

Predict original image  
with second NN 

(Dosovitskiy & Brox, 2016)

4096

4096

4096
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Explanations are Context-Dependent
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Explanations with Neural Network Features
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DEMUDFeatures

Selection

Explanation

   ?

CNN Feature 
Inversion:  

Predict original image  
with second NN 

(Dosovitskiy & Brox, 2016)
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Explanations with Neural Network Features
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DEMUDFeatures

Selection

Explanation

   ?

CNN Feature 
Inversion:  

Predict original image  
with second NN 

(Dosovitskiy & Brox, 2016)

4096

4096

4096

What’s new?

Known
Already 
seen:
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Interpretable Image Discovery
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Experiments – MSL Rover images
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• 6737 images: Mastcam, Navcam, 
MAHLI 

• 25 classes: rover parts, ground, horizon, 
sun 

• Uneven distribution 
• CNN was trained on  

Earth images; 
can it help here?
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Experiments – MSL Rover images
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Experiments – MSL Rover images
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Experiments – MSL Rover images
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Ground

Explanations – MSL Rover images
Selection DEMUD knows What’s new

Wheel

Dust 
Removal 

Tool  
(brush)

Simplified image
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Experiments – Insect images
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• 1362 images: 
stoneflies 
from the Pacific 
Northwest 

• 9 classes 
• Uneven 

distribution
Dietterich et al., Oregon State Univ.
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Stonefly montage
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Experiments – Insect images
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Zapada

Explanations – Insect images
Image DEMUD knows What’s new

Calineuria 
californica

Hesperoperla 
pacifica

Simplified image
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Summary
• Machine learning can aid scientific investigations 

• Fast discovery in large or complex data sets 
• Interpretable machine learning is vital 

• DEMUD algorithm 
• Quickly discovers new classes 
• Provides explanations 

• Examples: ChemCam spectra,  
Mars rover images, stonefly insect images 

• Next: Re-train neural network to specialize on 
images of interest

39

Thank you: NASA Planetary Data System (PDS) Imaging Node


