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Energy, Environment, Resources,
Climate

Mineralogical, solid state chemical and thermodynamic
aspects of
— CO, management

— Nuclear energy

— Water

— Metals

— No free lunch

— Science - policy - politics

— Thermodynamics wins in the long run




Main Issue

Synthetic and natural nanomaterials are often forced,
by low temperature aqueous conditions, to remain
fine grained, with particle sizes of 1-100 nm.

How does this constraint alter thermodynamics,

phase equilibria, and the occurrence of specific crystal
structures?

Different phases have different surface energies, thus
their stability is affected differently by grain size
diminution

OXIDES AND OXYHYDROXIDES OF Ti, Mn, Fe, Co, Zn,
Al, Zr, Hf, Ce, U.....




Magnitudes

* Effect on free energy of reaction:

— Surface energies range from 0.5 to 5 J/m2. Take A
(surface energy) = 2 J/m?

— Take surface area = 100 m?/g

— Take molecular weight = 150 g/mol
— AG=2x100 x 150 => 30 kJ/mol

— General principle - small grain size
thermodynamically stabilizes phase assemblage
with lower surface energy




Calorimetric Measurement of Surface
Enthalpies (Energies)

* Measure enthalpy of solution versus surface
area, slope of line will give surface energy
Complications

— Particles are hydrated and hold water strongly

— Particles may be agglomerated, twinned, etc. so
sizes estimated by Xray, TEM, BET may differ and
interfacial energies may play a role




High temperature oxide melt drop-solution calorimetry
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H,O Correction:
Thermodynamic Cycle

One wants
(1) MO (nano, 298 K) 2 MO(dissolved, 973 K)

One measures
(2) MO-nH20 (nano, 298 K) = MO(dissolved, 973 K) + nH20 (gas, 973 K)

(3) H20 (gas, 973 K) 2> H20 (gas, 298 K)

(4) MO (nano, 298 K) + nH20 (gas, 298 K) 2 MO-nH20 (nano, 298 K)
(1) = (2) + n(3) + (4)
AH1 = AH2 + nAH3 + AH4

If AH4 is heat of condensation of pure H20 (-44 kJ/mol) then AH1 refers to hydrated
particle surfaces

If AH4 is obtained from water adsorption enthalpy and is more negative than -44 kJ/
mol, then AH1 refers to anhydrous particle surfaces




Control of Polymorphism
at the Nanoscale

Competition between polymorphism and
surface energy

Free energy crossovers as function of size
More metastable polymorphs have lower

surface energies in general

So nanoscale effects change what phase is

stable when system is constrained not to
coarsen : STABILITY CROSSOVERS AT
NANOSCALE




Alumina
a-Al,O;-corundum- the stable bulk phase based

on hcp oxygen packing with Al in octahedral
coordination

v-Al,O;- a defect spinel, ccp oxygens and
Al and vacancies in both octahedral and tetrahedral
coordination. Produced by low temperature
dehydration of oxyhydroxides and hydroxides,
generally high surface area and poor crystallinity

Different physical and catalytic properties.

Is y-Al,O; stabilized at the nanoscale by having
lower surface energy than a.?
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Enthalpy of Iron Oxides Relative to Bulk
Hematite plus Water
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Goethite = Hematite + Water

log P (pressure in bar)

N W A~ O
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Oxidation State Effects

Obviously nanoparticles oxidize and reduce faster than bulk,
and may be catalytically more active. But there are also
thermodynamic effects

Rocksalt oxides have higher surface energy than spinels.

Oxides have higher surface energy than metals. Spinels have
lower surface energies than trivalent non spinel oxides

New data on CoO nanoparticles. They reduce water to

hydrogen at room temperature, producing nano Co,0,. They
are reduced to Co metal under vacuum at room
temperature. Hydration state also plays a role.

Similarly Fe;0, stability expands at the nanoscale.

Mn oxides- surface energy increases in the order

hausmannite, bixbyite, pyrolusite (coincidentally with
increasing oxidation state




Measured surface energies of spinels (J/m?) for
anhydrous surface

Alg,;0, 1.5
Feg/30, 0.7
MgAl O, 1.8
Mn,O, 1.6
Fe,O, 1.4

Co;0, 2.0
Rocksalt divalent oxides and trivalent oxides have

higher surface energies, typically in the 2-4 J/m?
range




Surface Energy Systematics

Spinels (y-Al,O;, y-Fe,O,, MgAl,O,, Co;0,, Fe,O,,
Mn,0,, Fe,TiO,) all have lower surface energies
than divalent, trivalent, or tetravalent binary
oxides.

Olivines and perovskites have higher surface
energies

Layered materials have low surface energies

This appears general and is generally supported by
DFT calculations




Enthalpy relative to bulk phase as function of surface

area in Co-0 system
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Co — O Phase Diagram
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Oxidation-Reduction Equilibria among Transition Metal Oxides Change
Dramatically at the Nanoscale Because of Differences in Surface Energies

Relevant to materials processing, environmental science, geology, and even biology

For example, forl0 nm iron oxides, wustite FeO has no stability field at all, with iron
coexisting with magnetite

Spinels, M304 have lower surface energies than divalent oxides MO and trivalent oxides

M304, expanding the spinel stability field.
Navrotsky et al. Science 330, 199-201 (2010)
@ UCDAVIS
Thermochemistry
Laboratory
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Surface free energy (SFE) shifts favor
the nanophase Mn oxides of lower SE.

Surface hydration enhances SFE shifts.
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T as perturbation, for example
SAS water P \\f{%{ watﬁgor

Mn oxidesurface |

Removal of strongly-associated surface (SAS)
water thermodynamically drives the nanophase

surface energy (SE) to increase

Why only 15% transformation???
What’s the mechanism?!

Mn,0, island formation

3 Mn,0, +2 H,0

Mn,0;,

Mn,0; + nH,0 (SE,yp, 1.77 J/m?)

Mn,0;-nH,O (SE; 4 1.29 J/m?) J‘
Mn,0,

&/or ‘ ‘. ‘

2Mn;0,+1.50, _

3Mn203+2H20~)° ‘ ‘ ‘

‘ @ Mn,0,

Small particle size mediated transformation



Implications of Redox Shifts

Catalysis, hydrogen production, water
splitting, batteries,sensors

Environmental redox of Fe, Cr, U....

Biology, origin of life, interpretation of data
from Mars

THERMODYNAMICS AS WELL AS KINETICS




The Path Forward

* Rigorous - include surface energy as a
variable for all phases and calculate equilibria
for given particle sizes

Practical — Choose particle size of 10 and 100

nm and add constant free energy terms to

each phase (estimating when necessary) and
calculate phase diagrams for “small” and

III

“very small” particle systems




Catalysis, sensors, batteries: some
recent studies

“Co0” catalysts for CO oxidation probably are
Co304, low surface energy may be important
both thermodynamically and catalytically

Sn02 a better gas sensor than TiO2

“CaMnO” catalyst for water splitting, a
biomimetic of Photosystem Il in
photosynthesis

Li battery materials- nanoscale effects




CaMnO water splitting catalysts

* Nominally CaMn,0,-nH,0 and CaMn,O,-nH,0
but actually more oxidized so there is Mn3*
and Mn**

* Nanophase layered birnessite related

structure
* Low surface energy




Energetic Basis of Catalytic Activity of Layered Nanophase
Calcium Manganese Oxides for Water Oxidation
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sample.

Layered Structure (L. S.)
CaMnO 8 has low surface
energy, holds water relatively
loosely on its surfaces, and has a
variable Mn oxidation state
within a single phase.

Internal enthalpy of oxidation of
L. S. CaMnO?3 is:

1.

2.

Independent of Mn3*: Mn#
and [Ca?*]/[Mn]

Much less exothermic than
Mn,0,/MnO, redox couple
(AH =-168 kJ/mol) O,

oxidation

Birkner N, Nayeri S, Pashaei B, Najafpour MM, Casey WH, Navrotsky A (2013) PNAS 110(22):
8801-8806.
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Battery materials

Redox equilibria and therefore
electrochemical potential may depend on
particle size. Surface energies?

Recent work on LiCo0O2

Thermodynamics of other new
materials, e.g. triplite-tavorite




LiCoO, : Layered rocksalt -

derived structure
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Surface energy

Energy of hydrous surface —

2.10 £ 0.35 ) m*?
Energy of anhydrous surface -

2.29 +
0.35 J m2almost no stabilization by
hydration

Compare to CoO

Energy of hydrous surface —
2.82+0.20 ) m?
Energy of anhydrous surface -
3.57 £ 0.30J m?

128 4 LiCoO,-surface energy
1 R*=0.99

—— Hydrous Case 2.10+/-0.35 J m*

—— Anhydrous Case 2.29+/-0.35 J m”

0 2000 4000
Surface Area (m“mol)

DFT calculations, Shirley Meng
group (2012), give 2.1 J/m? for
anhydrous surface, influenced
by coordination geometry and
spin state of Co3*

6000



General Principle ??

The best functional and catalytic
materials have relatively low

surface energies and low affinity
for H,0 so that the other species

on which they must act can gain
access to their surfaces.



Carbonates

* Prenucleation clusters 2 amorphous
carbonates = nanophases =2 calcite

* Series of downhill steps governed by
surface energy, hydration,
polymorphism

e Ostwald step rule




Free energy (schematic)

Ostwald Step Rule
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Transformation and Crystallization Energetics of
Synthetic and Biogenic Amorphous
Calcium Carbonate (ACC)

The transformation/crystallization enthalpies were measured using isothermal
acid solution calorimetry and differential scanning calorimetry (DSC)

Enthalpy elative to calcite (kJ/mol)
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Major findings

*ACC is a highly metastable phase compared to

all crystalline CaCO; polymorphs

*Dehydrated synthetic ACC produced by heating

is energetically similar to biogenic ACC

*The formation of anhydrous ACC from

hydrated ACC is exothermic

* ACC crystallization is energetically downhill

through stepwise evolution of series of phases :
More metastable hydrated ACC — Less metastable

hydrated ACC = Anhydrous ACC ~ Biogenic anhydrous
ACC = Vaterite — Aragonite— Calcite

PNAS, (2010) 107, 16438-16443



Energetics of Amorphous
Ca, ,Mg,CO,-nH,0

AMC is more metastable than ACC but more persistent

Biomineral composition

"
)

© Disordered dolomite

Enthalpy relative to calcite/magnesite (kJ/mol)

ol e o
Calcite Magnesite
Sr © Dolomite
1 N 1 N 1 N 1 N 1 N 1
0.0 0.2 0.4 0.6 0.8 1.0
Mg/(Mg+Ca)

Two distinct regions of amorphous Ca, ,Mg,CO;-nH,0 (0<x<1) phases
Homogeneous single phase (x < 0.47) and heterogeneous two phases (x > 0.47)
Two distinct amorphous precursors
x = 0-0.2 - less metastable single phase is frequently found in biogenic carbonates
x ~ 0.5 - least metastable phase could possibly be dolomite precursor
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