

- Hold warming below 1.5°C?
 - How close is this limit? 400 450 ppm
- Hold the line at 2.0°C!
 - IPCC calls for negative emissions
 450 500 ppm

Promised actions do not match ambitions

Safely changing energy infrastructures takes time

Public domain image taken from the internet

IPCC calls for negative emissions

Negative carbon emissions

Retrieval of carbon from environment

Direct removal of CO₂ from air or ocean, BECCS, etc.

Large demand for carbon dioxide disposal

- Euphemistically called storage
- 100 ppm reduction implies ~ 400 Gt C or ~1500 Gt CO₂
 - Ocean will return its carbon

CCS proven reserve needs to be built up from scratch

- Negative emissions create enormous demand stress
- Biggest argument against continued use of fossil fuels
- Coal use will be eliminated or postponed?

Ask when - not if - CCS is needed

Waste Disposal Paradigm

CO₂ dumping in the atmosphere needs to stop

Reuse, reduce, recycle alone cannot achieve goal

Analogy to other waste management

- sewage systems health imperative
- garbage collection environmental/health imperative
- highway litter removal aesthetic/environmental

Less litter generation does not permit littering

- Emissions must stop
- Reuse, reduce recycle will follow

Collect and dispose of waste

Disposal is the bigger challenge

- But research is more advanced and more accepted
 - Geological sequestration removes the objection that there is no option
 - Mineral sequestration offers a large long-term storage reservoir
 - Exotic options might be added later

Capacity, Permancence,
Physical and Environmental Safety,
Public Acceptance

Focus on air air capture

Air capture eliminates exceptions

- No emission source can be exempt
- Separates sources from sinks
- Carbon democratization

Air capture for drawing down CO₂

- Negative emissions are already unavoidable
- Requires vast CO₂ storage capacity
- Negative carbon emissions

Air capture with non-fossil liquid fuels

- Synthetic fuel production from CO₂ and H₂O
- Provides energy storage & liquid fuels
- Requires cheap non-fossil energy
- Carbon recycling

Air capture with fossil liquid fuels

- Carbon balanced by sequestration
- Requires cheap CO₂ storage
- Carbon balancing

Difficulties in gaining acceptance for direct air capture

No need

Climate skeptics: no need to spend resources

Moral hazard

- Social Engineer: DAC delays necessary life style changes
- Renewable Advocate: DAC delays renewables

Forces unwanted action

Oil companies: Focus on CO2 from coal

Not economically feasible

- Chemical Engineers: Sherwood's Rule implies too high a cost
 - After challenging the thermodynamics of the process

Responses

Climate Skeptic:

 CO_2 accumulates in the air, therefore, there is a limit on CO_2 emissions even if the exact number may still be debatable.

Social Engineer:

Withholding a solution to a potentially catastrophic change in climate is irresponsible.

Renewable Energy:

Air capture enables renewable energy via synthetic fuels.

Oil companies:

Regulations should treat all CO_2 emissions equal. No reason to make an exception for transportation fuels.

Traditional Engineering:

Technology demonstration, active research, and reasoned arguments. Sherwood's Rule does not always apply.

Three Rules for Technological Fixes

D. Sarewitz and Richard Nelson:

Three rules for technological fixes, *Nature*, 2008, 456, 871-872

- I. The technology must largely embody the cause-effect relationship connecting problem to solution.
- II. The effects of the technological fix must be assessable using relatively unambiguous or uncontroversial criteria.
- III. Research and development is most likely to contribute decisively to solving a social problem when it focuses on improving a standardized technical core that already exists.

In contrast, direct removal of CO_2 from the atmosphere — air capture — satisfies the rules for technological fixes. Most importantly, air capture embodies the essential cause—effect relations — the basic go — of the climate change problem, by acting directly to reduce CO_2 concentrations, independent of the complexities of the global energy system (Rule I). There is a criterion of effectiveness that can be directly and unambiguously assessed: the amount of CO_2 removed (Rule II). And although air-capture technologies have been remarkably neglected in both R&D and policy discussions, they nevertheless seem technically feasible (Rule III).

Feasibility & Affordability?

CO₂ in air is dilute and air is full of water

- Sherwood's Rule suggests that costs scale linearly in dilution
- The air carries 10 to 100 times as much H₂O as CO₂
- First-of-a-kind apparatus is expensive (APS study: \$600/t)

Air capture is sorbent based

Sorbent based separation of CO₂ from air

- Concentration ratio is 1: 2500
 - Eliminates all options that perform significant work on the air
 - Sorbents postpone work to the regeneration step

All sorbents are chemical sorbents

- At 400 ppm physisorption is too weak
- \circ Minimum free energy of binding: $\Delta G > 22$ kJ/mol

Sorbents exploit carbonate chemistry

- Alkali hydroxides
- Weak and strong based amines
- Thermal, vacuum and reaction based recovery
 - Humidity swing takes advantage of H₂O CO₂ sorbent reactions

Thermodynamics checks out

Theoretical minimum free energy requirement for the regeneration is the free energy of mixing

Gas pressure P_0 CO_2 partial pressure P_x Denoted as (P_0, P_x)

$$\Delta = * *; * *_{n_1 - n_2} *_{n_2} *_{n_3} *_{$$

Specific irreversible processes have higher free energy demands

Sorbent Strength

depends logarithmically on CO₂ concentration at collector exit

$$\Delta G = RT \log P/P_0$$

Sherwood's Rule

A challenge for dilute values

Artificial kelp to absorb uranium from seawater

- Passive, long term exposure to water
 - Braids of sorbent covered buoyant plastic
- Steenstal actives the Hoor by temporal active the Hoor by temporal active
 - Laminar flow over sorbent
 - Uptake is limited by boundary layer transport
 - Regeneration
 - After harvesting the strings
- must make a small
- Gross viola Air contacting must be cheap

 Cost estimates range from \$200 to \$120 kg

 - Sherwood \$3 million/kg

Low cost comes with experience

Ingredient costs are already small - small units: low startup cost

Spot the low cost power plant

Per unit of power, the cost of a car engine is about 100 times lower than that of power plants

wikipedia

Contactor: Wind energy – Air capture

Image courtesy Stonehaven production

artist's rendering

equally sized windmill

feasible

Extracting 20 J/m³ seems

Regenerator: Flue Gas Scrubbing — Air Capture

Sorbent regeneration slightly more difficult for air capture than for flue gas scrubbers

artist's rendering

Center for Negative Carbon Emissions

Sorbent Choice: Anionic Exchange Resins

Solid carbonate "solution" Quaternary ammonium ions form strong-base resin

Type I Strong Base Resins

- Positive ions fixed to polymer matrix
 - Negative ions are free to move
 - Negative ions are hydroxides, OH⁻
- Dry resin loads up to bicarbonate

$$\circ$$
 OH⁻ + CO₂ \rightarrow HCO₃⁻ (hydroxide \rightarrow bicarbonate)

Wet resin releases CO₂ to carbonate

$$\circ 2HCO_3^- \rightarrow CO_3^- + CO_2 + H_2O$$

Moisture driven CO₂ swing

Moisture Swing

The Moisture Swing

Humidity swing: Yield and desorption pressure strongly dependent on ambient temp., rel. humidity, and optional heat management and evacuation of regenerator

0000 Wang of all 201 2011 and 1 001 201

Contactor & Regenerator

- "monolith" with simple flow path
 - Momentum loss (pressure drop) and CO₂ loss follow similar transport laws
 - Optimal design balances transport resistance in air to transport resistance in wall
 - Given the wall resistance this defines the optimal dimensions
- Wind driven flow as contactor
- Moved for regeneration with water

Filter Units

Approximation of a monolith

Accordion shape of the collector unit

How it will look

Jason Kmon, March 2016

Required production capacity small on world scale

Shanghai harbor processes 30 million containers a year

World car and light truck production: 80 million per year

Atmospheric CO₂ Capture and Membrane Delivery

Rittmann and Lackner, DOE TABB

