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IPCC calls for negative emissions
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arbon Budget

For every ton of carbon
taken from the ground
another must be returned

Storage

For every ton of carbon
U | dioxide added to the
I atmosphere another ton

must be removed
Direct Air Capture




Negative carbon emissions

e Retrieval of carbon from environment
o Direct removal of CO, from air or ocean, BECCS, etc.

e Large demand for carbon dioxide disposal
o Euphemistically called storage
o 100 ppm reduction implies ~ 400 Gt C or ~1500 Gt CO,

e QOcean will return its carbon
o CCS proven reserve needs to be built up from scratch
o Negative emissions create enormous demand stress

o Biggest argument against continued use of fossil fuels
o Coal use will be eliminated or postponed?

Ask when — not if — CCS is needed




Waste Disposal Paradigm

e CO, dumping in the atmosphere needs to stop
o Reuse, reduce, recycle alone cannot achieve goal

e Analogy to other waste management
o sewage systems - health imperative
o garbage collection — environmental/health imperative
o highway litter removal — aesthetic/environmental

e Less litter generation does not permit littering
o Emissions must stop
o Reuse, reduce recycle will follow

Collect and dispose of waste




Disposal is the bigger challenge

e But research is more advanced
and more accepted

o Geological sequestration removes the objection
that there is no option

o Mineral sequestration offers a large long-term
storage reservoir

o Exotic options might be added later

Capacity, Permancence,
Physical and Environmental Safety,
Public Acceptance
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Focus on air air capture

e Air capture eliminates exceptions
o No emission source can be exempt
o Separates sources from sinks
o Carbon democratization

Air capture for drawing down CO,
o Negative emissions are already unavoidable
o Requires vast CO, storage capacity
o Negative carbon emissions

Air capture with non-fossil liquid fuels
o Synthetic fuel production from CO, and H,O
o Provides energy storage & liquid fuels
o Requires cheap non-fossil energy
o Carbon recycling

Air capture with fossil liquid fuels
o Carbon balanced by sequestration
o Requires cheap CO, storage
o Carbon balancing
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Difficulties in gaining acceptance

for direct air capture

No need
o Climate skeptics: no need to spend resources
Moral hazard

o Social Engineer: DAC delays necessary life style changes
o Renewable Advocate: DAC delays renewables

Forces unwanted action
o Oil companies: Focus on CO2 from coal

Not economically feasible

o Chemical Engineers: Sherwood’s Rule implies too high a cost
o After challenging the thermodynamics of the process




Responses

e Climate Skeptic:

CO, accumulates in the air, therefore, there is a limit on CO, emissions
even if the exact number may still be debatable.

e Social Engineer:

Withholding a solution to a potentially catastrophic change in climate is
irresponsible.

e Renewable Energy:
Air capture enables renewable energy via synthetic fuels.
e Oil companies:

Regulations should treat all CO, emissions equal. No reason to make an
exception for transportation fuels.

e Traditional Engineering:

Technology demonstration, active research, and reasoned arguments.
Sherwood'’s Rule does not always apply.
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Three Rules for Technological Fixes

D. Sarewitz and Richard Nelson:
Three rules for technological fixes, Nature, 2008, 456, 871-872

I. The technology must largely embody the cause-effect
relationship connecting problem to solution.

II. The effects of the technological fix must be assessable
using relatively unambiguous or uncontroversial criteria.

II1. Research and development is most likely to contribute
decisively to solving a social problem when it focuses on
improving a standardized technical core that already exists.

In contrast, direct removal of CO, from the atmosphere — air capture — satisfies the
rules for technological fixes. Most importantly, air capture embodies the essential
cause—effect relations — the basic go — of the climate change problem, by acting
directly to reduce CO, concentrations, independent of the complexities of the global
energy system (Rule 1). There is a criterion of effectiveness that can be directly and
unambiguously assessed: the amount of CO, removed (Rule Il). And although air-
capture technologies have been remarkably neglected in both R&D and policy

discussions, they nevertheless seem technically feasible (Rule I11).
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Feasibility & Affordability?

CO, in air is dilute and air is full of water
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« Sherwood’s Rule suggests that costs scale linearly in dilution
- The air carries 10 to 100 times as much H,0 as CO,
« First-of-a-kind apparatus is expensive (APS study: $600/t)
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Air capture is sorbent based

e Sorbent based separation of CO, from air

o Concentration ratio is 1 : 2500
e Eliminates all options that perform significant work on the air
e Sorbents postpone work to the regeneration step

e All sorbents are chemical sorbents
o At 400 ppm physisorption is too weak
o Minimum free energy of binding: AG > 22 kJ/mol

e Sorbents exploit carbonate chemistry
o Alkali hydroxides
o Weak and strong based amines

o Thermal, vacuum and reaction based recovery
e Humidity swing takes advantage of H,O — CO, — sorbent reactions
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Thermodynamics checks out

Theoretical minimum free energy Gas pressure P,
requirement for the regeneration is the CO, partial pressure P,
free energy of mixing Denoted as (P, P,)

s \ CO, (Py, Py)
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Specific irreversible processes have
higher free energy demands
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Sorbent Strength

depends logarithmically on CO, concentration at collector exit

AG = RT log P/P,

1
a1

Air Power plant

Free Energy (kJ/mole)
>

Sorbent
regeneration -30 i .

dominates cost % 1000 10000 100000
CO2 Partial Pressure (ppm)
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Sherwood’s Rule

Price ($/Ib)

A challenge for dilute values

Sherwood’s rule for minerals
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Cost=a D + b + clog(D)

must make a small
Air contacting must be cheap



Low cost comes with experience
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Ingredient costs are already small — small units: low startup cost
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Spot the low cost
power plant

Per unit of power, the cost of a
car engine is about 100 times
lower than that of power plants

wikipedia
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Contactor: Wind energy — Air capture

Wind energy
~20J/m3

CO, combustion
equivalent in air

10,000 J/m?3

o Passive contacting
: Wikipééia pictur; ' Of air iS
| inexpensive

Air collector reduces net CO,
emissions much more than
equally sized windmill

Extracting 20 J/m3 seems
feasible

Image courtesy Stonehaven production
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Regenerator: Flue Gas Scrubbing — Air Capture

BERREN

_____

Dominant costs
are similar for
air capture and
1 flue gas

Sorbent regeneration * scrubbing

slightly more difficult for
air capture than for flue
gas scrubbers

Image courtesy Stonehaven production
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Center for Negative Carbon
Emissions

——— Working towards a public
| demonstration

Outside prototype



Sorbent Choice: Anionic Exchange Resins

Solid carbonate “solution”

Quaternary ammonium ions form strong-base resin

Type | Strong Base Resins o PQsjtjve ions fixed to polymer matrix
o Negative ions are free to move
o Negative ions are hydroxides, OH-

e Dry resin loads up to bicarbonate

+
CHy; - N - CH, o OH  + CO, & HCOj3™ (hydroxide > bicarbonate)
CH,

e Wet resin releases CO, to carbonate

Moisture driven CO, swing
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Moisture Swing
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The Moisture Swing

Wet Isotherm

24°C

Dry Isotherm

25°C, RH: 21%
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Tao Wang et al
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Humidity swing: Yield and desorption pressure strongly dependent on ambient
temp., rel. humidity, and optional heat management and evacuation of regenerator
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Contactor & Regenerator

e “monolith” with simple flow path

o Momentum loss (pressure drop) and CO, loss
follow similar transport laws

o Optimal design balances transport resistance in
air to transport resistance in wall

o Given the wall resistance this defines the optimal
dimensions

e Wind driven flow as contactor
e Moved for regeneration with water
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Filter Units

. "~

-
A A T N N o

= -~
A A T T T
Y AV AV v oA,

28



proximation of a monolith
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airflow

Accordion shape of the
collector unit

airflow



How it will ook
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Production capacity:
10 million per year

Copyright 2008 by Global Research Technologies, LLC, All Rights Reserved



Required production capacity small on world scale

Shanghai harbor processes
30 million containers a year

BRSO
' o '|’,’.'>‘§&'l T

World car and light truck
production: 80 million
per year

Shanghai container port, wikipedia picture



ARIZONA STATE UNILVERSITY

Atmospherlc CO Capture and
Membrane Dellvery

Bioplastics

Large-scale algae cultlvatlon (courtesy of Joule®)

Rittmann and Lackner, DOE TABB




Alr aPture

Fhotovoltaic

Y.

Desalmatlon

 carbon dioxide,returned through air

oxygen released to air

"The new “biomass”

‘More efficient energy
‘More efficient CO, capture

water, returned t!ﬁrouglﬂ the ocean



