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Melt transport paths from depth to surface
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Sheeted dikes in the
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Porous flow QC

Melting occurs at the grain scale O
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J Field evidence for channelized flow —
geochemical and geophysical observations

— Basaltic melt is in equilibrium with dunite, but not with harzburgite
— Anastomosing network of tabular dunite bodies in harzburgite

Oman ophiolite

.+ harzburgite -

L g e .= olivine +
L < pyroxene-

iRLs 90 meters,

Braun and Kelemen (2002)




Geochemical constraints
— Chemical composition: source + pathway
— Isotopic disequilibria: velocity
== — Channelization is necessary
— Produces cylindrical channels

Geophysical constraints

— Deformation produces tabular channels
— Channels are shear zones
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Reactive-infiltration instabilities

—Channelized flow occurs due to positive feedback
between flow and reaction. Chadametal. (1986)

— Melt becomes under saturated in pyroxene and thus
reactive as it ascends.

melt: + pyroxene + olivine; — melt; + olivine,
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Reactive-infiltration instabilities

Darcy’s law permeability
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Starting materials

— porous sink
=) AlLO, with 20 vol% porosity

— partially molten rock

=) 50:50 olivine:pyroxene + 4, 10 & 20 vol% melt
P s =0.1 - 300 MPa

Partiall
molten
rock

Reactive
melt
source

— reactive melt source
m) alkali basalt + 1 wt% Yb

T'= 1200 -1300°C




Reactive-melt infiltration samples —
without and with a pressure gradient

APp/L =0 MPa/mm APp/L =85 MPa/mm
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,§/} Anatomy of a sample of olivine + pyroxene

exposed to a reactive melt
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,/U Structure of channels (Rlls) formed

by reactive infiltration
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U Melt chemistry

55

50

40

35

After reaction, melt is more Si-rich

in channel than in the melt source. e ol (i)



X-ray computed tomography of reaction v
infiltration instabilities Qf\
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X-ray computed tomography — RRI morphology
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Melt velocity

— Stokes settling: 0.5 — 1.0 pm/s
— Pressure gradient: 1 - 102 um/s
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Some conclusions

Reactive-melt migration results in melt channelization
Melt-rich channels consist of olivine + melt with no pyroxene

Melt-rich channels have a crooked finger-like morphology,
not tabular form as found in ophiolites

Initial melt fraction influences channel aspect ratio

Channelization markedly increases bulk permeability and
thus the melt flux

Interdependencies in Rl & porous flow equations render
some Da# & Pe# combinations physically unobtainable
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Spontaneous stress-induced melt segregation
Channelized flow occurs due to positive feedback between flow and reaction.

Stevenson (1989) _ N ass :
100 - stress-induced melt distribution

starting melt distribution /
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Assumption: € is spatially constant. Recall: n=(0,-0,)/¢.
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Stress-driven melt segregation @C

* Stevenson (1989) predicted “spontaneous, small-scale C
melt segregation in deforming rocks” due to dependence
of viscosity on melt fraction: n =1 (2 — a'$p*?) — n exp(-aod)



Stress-driven melt segregation

—simple shear QC
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JU Stress-driven melt segregation ~ >

— torsional shear

piston

sample of
olivine + 4% MORB
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melt-depleted
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King et al. (2010).\



melt fraction, ¢
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Stress-driven melt segregation

* Stevenson (1989) predicted “spontaneous, small-scale O
melt segregation in deforming rocks” due to dependence S
of viscosity on melt fraction: n =1 (2 — a'¢p*?) — n exp(ad)

* Spiegelman (2003), based on a linear analysis, predicted that
spontaneously developed melt-rich bands oriented at 0 = 45°
to the shear plane will grow fastest

~



Stress-driven melt segregation

\/ //
* Stevenson (1989) predicted “spontaneous, small-scale k
melt segregation in deforming rocks” due to dependence
of viscosity on melt fraction: n =1 (2 — a'¢p*?) — n exp(ad)

* Spiegelman (2003), based on a linear analysis, predicted that

spontaneously developed melt-rich bands oriented at 0 = 45°
to the shear plane will grow fastest

* Katzetal. (2006) predicted a band angle of 6 = 15° fora
porosity-weakening, non-Newtonian, power-law viscosity of
the form n = n expla(d-¢,)]/c*"ifn =6; € a "
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Stress-induced anisotropy v

In grain-scale melt distribution
produces anisotropy in viscosity

Takei and Holtzman, (2009); Takei and Katz (2013)



,/U Melt pocket alignment in simple shear

—without melt-rich bands
—melt pockets align ~45° to shear plane
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//&) Stress-driven melt segregation —
perturbations grown into melt-rich bands

low band angle =» anisotropic viscosity

simple shear torsion
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asthenosphere boundaries of oceanic plates”
- Pacific and Philippine Sea

— Shear wave velocity
'wooc | | isreduced at the
20 — | lithosphere-
astenosphere
boundary (LAB)
by ~7 to 8%,
which would require
~4% of texturally

equilibrated melt.
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Based on petrological constraints, the average amount of melt in LAB is <1%.
Velocity drop possible with layered structure composed of melt-rich bands
(dpangs = 0-25) and melt-depleted lenses (¢, = 0) with 1% bands.



Some conclusions

Shear deformation of partially molten rocks results in formation
of an anastomosing network of melt-rich bands

Melt-rich bands/sheets have a tabular morphology similar to
that found in ophiolites

Deformation localizes in these melt-rich regions, forming shear
zones

Melt-rich bands increase bulk permeability, channelizing melt
flow

Differential stress causes alignment of melt pockets at the grain
scale resulting in viscous anisotropy at the sample scale

Two-phase flow theory incorporating viscous anisotropy predicts
formation of melt-rich bands at low angle to the shear plane

The challenge — combine reactive-melt infiltration with shear



