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~200 kg/s water ice erupting from 250 km-diameter Enceladus
sustains a >10? yr old ring around Saturn.




Cryo-volcanism on Enceladus has deep tectonic roots.

water source = subsurface ocean
Postberg et al. 2009, 2011; Hu et al. 2015
less et al. 2014; Porco et al. 2014; Waite
et al.2009; Nimmo & Spencer 2013

4 continuously-
active ”tiger stripes" Density of Enceladus = 1.6 g/cc




~5 GW excess thermal emission from
surface fractures (100-km long “tiger stripes”)

South polar view of Enceladus: Close-up of one “tiger stripe”
moon is tidally locked

to Saturn

Spencer & Nimmo AREPS 2013

Porco et al. A) 2014 Hotspots up to 200K

No liquid water at surface
Latent heat represented by plumes <1 GW



10x vertical exaggeration (NASA)
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context for Enceladus’ plumbing system
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ice moon
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Today: How are eruptions sustained on 101-10° yr timescales?

\ /,_ Kite & Rubin, accepted by PNAS.
\ |

surface
I I : Prevailing view: conduit = crack
I | aStrObIOIOgy e.g. Hurford et al. 2007, Nimmo et al. 2007,
I | Tsou et al. 2012 Olgin et al. 2011, Smith-Konter & Pappalardo
2008
I I McKay et al. 2014
I |
| e
| . or-
: , habitability Water ultimately sourced from
| I Parkinson et al. 2008 | @ sub-ice ocean
3 | e.g. Postberg et al. 2009, 2011; Hu et al. 2015;

less et al. 2014; Porco et al. 2014; Waite et al.
2009; Nimmo & Spencer 2013; Zolotov, 2007.
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Understanding the sustainability of
water eruptions on Enceladus has broad implications

Tectonics:
Mass loss and vent temperature = boundary conditions for ice-shell
faulting and flow

Atmospheric chemistry:
Throttles supply of oxygen to Titan’s reducing atmosphere

Soils and geomorphology:
Cryo-ash builds up on small “cueball” moons of Saturn: landslides, channels

Planet formation:
Clues to anomalously variable densities of mid-sized Saturnian moons

Comparative planetology:
Is Enceladus the key to understanding Europa?



Open questions

Engine:
What powers Enceladus Tidal heating is the only plausible
volcanism? candidate, but location of heating is

poorly constrained.

Source:
What is the water source for
Enceladus’ eruptions?

A salty ocean is connected to the surface,
but exposing ocean water to space Plumbing system:

raises energy balance problems. How can conduits between ocean
and surface avoid freezing shut?

(w/Allan Rubin, Princeton U.)



Enceladus is small for active interior-driven volcanism
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Only tidal heating can provide the required energy

Heat source

Tidal

Radiogenic

Chemical

Secular
cooling

Joule
heating

Recent

impact

Maximum equilibrium (constant-eccentricity)
heat production: > 5 GW
(Fuller et al., arXiv 2016)

<0.32 GW assuming Cl chondritic composition

Water-rock reaction: <0.1 GW
(assuming complete water-rock reaction;
2.4 x10° J/kg srp)

Steady release of accretional heat <0.1 GW
26Al heating may be significant early on

<0.05 GW (Hand et al. JGR 2011)

Improbable

—

= Possible

J\

Falls short

- (some also
fail the
“Mimas test”)




Open questions

Engine:
What powers Enceladus

volcanism? Tidal heating is the only plausible

candidate.

Source:
What is the water source for
Enceladus’ eruptions?



Salty particles in plume indicate ocean material is escaping to space
Nano-silica in plume hints at hydrothermal vents (active?!)
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Open questions

Engine:
What powers Enceladus

volcanism? Tidal heating is the only plausible

candidate.

Source:
What is the water source for
Enceladus’ eruptions?

Sodium and nano-silica tell us that
the source is a subsurface ocean,
not clathrates or sublimation

Ocean water is exposed to space,
raising energy balance problems



Key constraint: energy balance at water table

vapor + ice
7 plume
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Open questions

Engine:
What powers Enceladus
volcanism?

Tidal heating is the only plaus
candidate — very likely interm

Source:
What is the water source for

r Enceladus’ eruptions?

Sodium and nano-silica tell us that
the source is a subsurface ocean,
not clathrates or sublimation

Plumbing system: Allan Rubin
How can conduits between ocean

>and surface avoid freezing shut?
(w/ Allan Rubin, Princeton U.)

Ocean water is exposed to space,
raising energy balance problems



s Probing tectonics
‘ — Earth

Tectonic mode:




Volcanism

Probing tectonics

— Enceladus

Tectonic mode:

Seismicity




Challenge for the prevailing view: Understanding tidal modulation of eruptions
(all four tiger stripes erupt as “curtains” throughout orbit; Spitale et al. Nature 2015)

I | 1 ' | | | ! 1 | |

o larger plume grains ol

@ smaller plume grains

1
NASA/JPL/Hedmanet al. 2013
Hurford LPSC 2015

phase shift 55° 3
(Q~1) .

= I B L e e - - e
Crack models are hard to reconcile with curtain eruptions ® @

maintained throughout orbit
l 1 1 L 1 1 1 L 1 1
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How to find tidal stresses at volcanic vents

Enceladus period = 1.3 days
Enceladus orbital ellipticity = 0.0047

Closest distance to Saturn Furthest distance from Saturn
Looking “up” at South Pole Looking “up” at South Pole

L\
q

time-averaged shape stripes

eccentricity tide only
thin-shell approximation
k, appropriate

for global ocean



Crack models are falsified by eruptions at periapse

looking “up” at Enceladus’

south pole: Z z A \

Periapse normal stress across tiger stripes (Pa) 4 Apoapse normal stress across tiger stripes (Pa) 4
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Challenge for the prevailing view: energy balance at water table
Kite & Rubin, accepted by PNAS

vapor + ice
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Alternative: Melted-back slot . g rubin, accepted by PNAS.

Compression Tension

\/ . \/ supersonic plume
supersonic plume N f

water level rises

water level falls

— <« —>
A
z A — S B —
A ocean ocean
X oh  [2m 21\ _ 0AWnaa(t) 2E
wg— = | — | oncos | —t | — :
v 5t 7 7 ot Ly

Attractive properties:
*Slot width lags tidal cycle VP = (D + h) Y (0a(t) - 2Wnaz(t)E/Lys)
*Slot does not close

*Turbulent dissipation heats slot
*Pumping disrupts ice formation




Daily tidal cycle of water in tiger stripes

Kite & Rubin, accepted by PNAS.

Change | | Width change Width change Width change due Slots interact
in slot due to water due to tides to back-force elastically: use
width ﬂow fromocean | | from Saturn from ice shell boundary-

into slot elasticity element method
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Tiger stripes can be approximated as straight, parallel and in-phase



Change

Daily cycle of tidal flow of water in slots

Slot width is a free parameter:

1

Wide slots track tidal forcing

Kite & Rubin, accepted by PNAS.

Narrow slots lag tidal forcing by 8 hours
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Velocity at inlet into slot (m/s)

025 05 1 15 225
Zero-stress slot half-width (m)



Turbulent dissipation of tidally-pumped vertical flow inside tiger stripes

explains power output, phase lag and sustainability of the eruptions
Kite & Rubin, accepted by PNAS.
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Long-lived water-filled slots have tectonic consequences

: 1 3 Kite & Rubin, accepted by PNAS.
éoa(2) = SN(T)04(2) S/2 J
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Tectonic feedback between subsidence and meltback
buffers South Polar terrain power to 3-9 GW

Kite & Rubin, accepted by PNAS
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Summary: Slot model explains and links sustainability of
volcanism on 10 yr - 106 yr Umescales

Kite & Rub/n accepted by PNAS
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Limitations and caveats

e |nitiation of ocean-to-surface conduits on ice
moons remains hard to explain (e.g. Crawford &
Stevenson 1988).

— may be related to ice-shell disruption at high orbital eccentricity:
such disruption could have created partially-water-filled conduits
with a wide variety of apertures, and evaporative losses caused
by tiger stripe activity would ensure that only the most
dissipative conduits (width 1-2m) endure to the present day.

* Slot stability is less of a concern.

— along-slot stirring is rapid relative to freeze-shut and flow-shut.



Testable predictions

Kite & Rubin, accepted by PNAS.

For the data from Cassini’s final flybys:

s w N e

Endogenic thermal emission should be absent between tiger stripes.
No correlation between emission and /ocal tiger-stripe orientation

Smooth distribution of thermal emission
Steady pattern of spatial variability, in contrast to bursty hypotheses. Vapor flux should
covary with ice-grain flux.



Colorful “double ridges”

Present-day activity?
(Roth et al. Science 2014)

is Enceladus the key to
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Next step

Chaos terrain




The best* astrobiology experiment in the Solar System:
Sampling ocean material at Enceladus

* terms and conditions apply.



Summary

Engine:
What powers Enceladus

volcanism? Tidal heating is the only plausible

candidate, but location of heating is
Tidal heating is the only poorly constrained.
plausible candidate

Source:

What is the water source for
Enceladus’ eruptions?

Sodium and nano-silica tell us that
the source is a subsurface ocean,
not clathrates or sublimation

Plumbing:

How can conduits between ocean
and surface avoid freezing shut?
(w/ Allan Rubin, Princeton U.)

Turbulent dissipation within tiger
stripes may explain the phase
curve of Enceladus’ eruptions, and
has cool tectonic implications.

Ocean water is exposed to space,
raising energy balance problems



Summary.

ENERGY SO@ Tidal heating is the only plausible
What powers Enceladus candidate, although the location of
volcanism? heating is poorly constrained.

CWATER SOURCE

What is the water source for
Enceladus’ eruptions?

_CONNECTION >

How can conduits between
ocean and surface avoid
freezing shut?

Sodium and nano-silica require a

subsurface ocean source - not clathrates
or sublimation.

Turbulent dissipation may explain
Enceladus’ phase curve and long-term
maintenance of fissure eruptions.
Geysers are not a passive tracer of
tectonics — they can drive tectonics!
Testing habitability on Enceladus (or
Europa) ultimately requires access to
ocean materials - easier if turbulent

dissipation maintains active fissures open
for > Kyr.

Thanks to Allan Rubin (Princeton U.) for displacement-discontinuity code
and numerous discussions, & Robert Tyler, Terry Hurford, Alyssa Rhoden, & Karl Mitchell for
additional discussions. Research website: www.climatefutures.com




Supplementary slides
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Tectonic feedback between subsidence and meltback
buffers the South Polar terrain to 5 GW
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Open questions

Engine:
What powers Enceladus

volcanism? Tidal heating is the only plausible

candidate, but location of heating is
Tidal heating is the only poorly constrained.
plausible candidate

Source:

What is the water source for
Enceladus’ eruptions?

Sodium and nano-silica tell us that
the source is a subsurface ocean,
not clathrates or sublimation

Plumbing system:

How can conduits between ocean
and surface avoid freezing shut?
(w/ Allan Rubin)

Turbulent dissipation within tiger stripes can
power and (sustain the phase curve of)
Enceladus’ eruptions, and has cool tectonic
implications!

Ocean water is exposed to space,
raising energy balance problems



Pipe model and slot model

Option: Each tiger stripe is one slot
Area changes by order unity under 1-bar
pressure cycle

AP )
0";‘ T E //\% %

Apertures < 10 m (not to scale)

Option: Array of unresolved pipes
Area changes by 10"-4




Testable predictions

Kite & Rubin, accepted by PNAS.
For the data from Cassini’s final flybys:

Endogenic thermal emission should be absent between tiger stripes.
2. No correlation between emission and local tiger-stripe orientation

- Distinguishes the slot model from all crack models.

3. Smooth distribution of thermal emission

- Contrast with spotty emission near jets (expected if flow is concentrated in pipes).

4. Steady pattern of spatial variability, in contrast to bursty hypotheses. Vapor flux should
covary with ice-grain flux.

For numerical experiments:

5. Changing water level and conduit width, when coupled to gas-dynamic flow in vent
(Ingersoll & Pankine, 2010; Nakamura & Ingersoll, 2012), should match phase-curve
amplitude.

6. “Ropy terrain” between tiger stripes (Barr & Pruess, 2010) should be consistent with
compression of condensates; topography should not bulge up between tiger stripes.



Extensional normal stress (Pa)
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Rudolph & Manga,
Icarus 2009

inferred from gravity
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Models of tidal modulation
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Nimmo et al., Astron. J. 2014



Crack models are falsified by eruptions at periapse




Crack models are hard to reconcile with curtain eruptions at periapse

Closest distance to Saturn Furthest distance from Saturn
Looking down on South Pole Looking down on South Pole

N\

time-averaged shape stripes

eccentricity tide only
thin-shell approximation
k, appropriate

for global ocean

Enceladus period = 1.3 days
Enceladus orbital eccentricity = 0.0047
Tidal stress amplitude ~ 1 bar



Kite & Rubin, in prep.

AP Slots interact elastically: used

displacement-discontinuity method

Crouch & Starfield, 1983
Rubin & Pollard, 1988

Paul Schenk / LP1 / USRA



Slot-slot interactions reduce total power output
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(4.4+0.2) GW excess thermal emission from surface fractures
Howett et al. 2014

South polar projection

190

to Saturn

Porco et al. Astron. J. 2014 . |
Abramov & Spencer 2009 Spencer & Nimmo AREPS 2013

Spitale et al., accepted

Hotspots up to 200K
No liquid water at surface
Latent heat represented by plumes <1 GW



Future directions

Application to Europa
(claimed to have erupted in December 2012)

How does along crack
branching affect power?

A
i M
o]4)
I | 100
0 6
Di mncc(km
How does changing What testable consequences

would long-lived tiger stripes

water level and conduit _
have for surface tectonics?

width affect flow
in vent?




All existing models fail!
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Long-lived water-filled slots have tectonic consequences
Kite & Rubin, accepted by PNAS.

S/2 1
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COLD, STRONG .
ICE % \
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Tectonic feedback between subsidence and melt-back buffers Enceladus
output to 2500 kg/s x L, = 7 GW
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T gradient
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WARM, WEAK inflow o inflow/
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Salt composition matches expectations for hydrothermal leaching
Age of interaction unconstrained
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