Powering cryo-volcanism on icy moons

Edwin Kite

Arizona State University, 17 February 2016

~200 kg/s water ice erupting from 250 km-diameter Enceladus sustains a $>10^2$ yr old ring around Saturn.

Cryo-volcanism on Enceladus has deep tectonic roots.

water source = subsurface ocean

Postberg et al. 2009, 2011; Hu et al. 2015
less et al. 2014; Porco et al. 2014; Waite
et al. 2009; Nimmo & Spencer 2013

Density of Enceladus = 1.6 g/cc

~5 GW excess thermal emission from surface fractures (100-km long "tiger stripes")

South polar view of Enceladus: moon is tidally locked

Porco et al. AJ 2014

Close-up of one "tiger stripe"

Spencer & Nimmo AREPS 2013

Hotspots up to 200K No liquid water at surface Latent heat represented by plumes < 1 GW

Perspective view of one of the "tiger stripes"

10x vertical exaggeration (NASA)

context for Enceladus' plumbing system

Today: How are eruptions sustained on 10¹-10⁶ yr timescales?

Kite & Rubin, accepted by PNAS.

2009; Nimmo & Spencer 2013; Zolotov, 2007.

Understanding the sustainability of water eruptions on Enceladus has broad implications

Tectonics:

Mass loss and vent temperature → boundary conditions for ice-shell faulting and flow

Atmospheric chemistry:

Throttles supply of oxygen to Titan's reducing atmosphere

Soils and geomorphology:

Cryo-ash builds up on small "cueball" moons of Saturn: landslides, channels

Planet formation:

Clues to anomalously variable densities of mid-sized Saturnian moons

Comparative planetology:

Is Enceladus the key to understanding Europa?

Open questions

Engine:

What powers Enceladus volcanism?

Tidal heating is the only plausible candidate, but location of heating is poorly constrained.

Source:

What is the water source for Enceladus' eruptions?

A salty ocean is connected to the surface, but exposing ocean water to space raises energy balance problems.

Plumbing system:

How can conduits between ocean and surface avoid freezing shut? (w/Allan Rubin, Princeton U.)

Enceladus is small for active interior-driven volcanism

Only tidal heating can provide the required energy

Heat source

Tidal

Maximum equilibrium (constant-eccentricity) heat production: > **5 GW** (Fuller et al., arXiv 2016)

Radiogenic

< 0.32 GW assuming CI chondritic composition

Chemical

Water-rock reaction: <0.1 GW (assuming complete water-rock reaction; 2.4 x 10⁵ J/kg srp)

Secular cooling

Steady release of accretional heat <0.1 GW ²⁶Al heating may be significant early on

Joule heating

<0.05 GW (Hand et al. JGR 2011)

Recent impact

Improbable

Falls short (some also fail the "Mimas test")

Possible

Open questions

Engine:

What powers Enceladus volcanism?

Tidal heating is the only plausible candidate.

Source:

What is the water source for Enceladus' eruptions?

Sodium and nano-silica tell us that the source is a subsurface ocean, not clathrates or sublimation

Ocean water is exposed to space, raising energy balance problems

Plumbing system

How can conduits between ocear and surface avoid freezing shut? (w/ Allan Rubin)

Turbulent dissipation within tiger stripes can sustain the phase curve of Enceladus' eruptions.

Salty particles in plume indicate ocean material is escaping to space Nano-silica in plume hints at hydrothermal vents (active?!)

Postberg et al. Nature 2011 Hsu et al. Nature 2015

Open questions

Engine:

What powers Enceladus volcanism?

Tidal heating is the only plausible candidate.

Source:

What is the water source for Enceladus' eruptions?

Sodium and nano-silica tell us that the source is a subsurface ocean, not clathrates or sublimation

Ocean water is exposed to space, raising energy balance problems

Plumbing system:

How can conduits between ocear and surface avoid freezing shut? (w/ Allan Rubin)

Turbulent dissipation within tiger stripes can sustain the phase curve of Enceladus' eruptions.

Key constraint: energy balance at water table

Open questions

Engine:

What powers Enceladus volcanism?

Tidal heating is the only plaus candidate – very likely interm

Source:

What is the water source for Enceladus' eruptions?

Sodium and nano-silica tell us that the source is a subsurface ocean, not clathrates or sublimation

Allan Rubin

Plumbing system:

How can conduits between ocean and surface avoid freezing shut? (w/ Allan Rubin, Princeton U.)

Turbulent dissipation within tiger stripes can sustain the phase curve of Enceladus' eruptions.

Ocean water is exposed to space, raising energy balance problems

Volcanism

Seismicity

Geology

Gondwanaland reconstruction c.400 million years ago

Gravity

Probing tectonics Earth

Tectonic mode:

Volcanism Seismicity Geology Geomorphology Gravity

Probing tectonics Enceladus

Tectonic mode:

Challenge for the prevailing view: Understanding tidal modulation of eruptions (all four tiger stripes erupt as "curtains" throughout orbit; Spitale et al. Nature 2015)

How to find tidal stresses at volcanic vents

Enceladus period = 1.3 days Enceladus orbital ellipticity = 0.0047

eccentricity tide only thin-shell approximation k₂ appropriate for global ocean Crack models are falsified by eruptions at periapse

Challenge for the prevailing view: energy balance at water table Kite & Rubin, accepted by PNAS

Alternative: Melted-back slot Kite & Rubin, accepted by PNAS.

Attractive properties:

- Slot width lags tidal cycle
- Slot does not close
- Turbulent dissipation heats slot
- Pumping disrupts ice formation

$$\nabla P = (D+h)^{-1}(\sigma_n(t) - 2W_{max}(t)E/L_{ts})$$

Daily tidal cycle of water in tiger stripes

Kite & Rubin, accepted by PNAS.

Tiger stripes can be approximated as straight, parallel and in-phase

Daily cycle of tidal flow of water in slots

Slot width is a free parameter:

Kite & Rubin, accepted by PNAS.

Turbulent dissipation of tidally-pumped vertical flow inside tiger stripes explains power output, phase lag and sustainability of the eruptions Kite & Rubin, accepted by PNAS.

Long-lived water-filled slots have tectonic consequences

Tectonic feedback between subsidence and meltback buffers South Polar terrain power to 3-9 GW

Kite & Rubin, accepted by PNAS

Self-consistent 2D thermal structure

Summary: Slot model explains and links sustainability of volcanism on 10 yr - 10⁶ yr timescales

Kite & Rubin

Limitations and caveats

- Initiation of ocean-to-surface conduits on ice moons remains hard to explain (e.g. Crawford & Stevenson 1988).
 - may be related to ice-shell disruption at high orbital eccentricity: such disruption could have created partially-water-filled conduits with a wide variety of apertures, and evaporative losses caused by tiger stripe activity would ensure that only the most dissipative conduits (width 1-2m) endure to the present day.
- Slot stability is less of a concern.
 - along-slot stirring is rapid relative to freeze-shut and flow-shut.

Testable predictions

Kite & Rubin, accepted by PNAS.

For the data from Cassini's final flybys:

- 1. Endogenic thermal emission should be absent between tiger stripes.
- 2. No correlation between emission and *local* tiger-stripe orientation
- Smooth distribution of thermal emission
- 4. Steady pattern of spatial variability, in contrast to bursty hypotheses. Vapor flux should covary with ice-grain flux.

Next step: is Enceladus the key to understanding Europa?

Chaos terrain

Present-day activity? (Roth et al. Science 2014)

Colorful "double ridges"

The best* astrobiology experiment in the Solar System: Sampling ocean material at Enceladus

^{*} terms and conditions apply.

<u>Summary</u>

Engine:

What powers Enceladus volcanism?

Tidal heating is the only plausible candidate

Tidal heating is the only plausible candidate, but location of heating is poorly constrained.

Source:

What is the water source for Enceladus' eruptions?

Sodium and nano-silica tell us that the source is a subsurface ocean, not clathrates or sublimation

Ocean water is exposed to space, raising energy balance problems

Plumbing:

How can conduits between ocean and surface avoid freezing shut? (w/ Allan Rubin, Princeton U.)

Turbulent dissipation within tiger stripes may explain the phase curve of Enceladus' eruptions, and has cool tectonic implications.

Summary.

ENERGY SOURCE

What powers Enceladus volcanism?

WATER SOURCE

What is the water source for Enceladus' eruptions?

Tidal heating is the only plausible candidate, although the location of heating is poorly constrained.

Sodium and nano-silica require a subsurface ocean source - not clathrates or sublimation.

CONNECTION

How can conduits between ocean and surface avoid freezing shut?

Turbulent dissipation may explain
Enceladus' phase curve and long-term
maintenance of fissure eruptions.

Geysers are not a passive tracer of
tectonics – they can drive tectonics!

Testing habitability on Enceladus (or
Europa) ultimately requires access to
ocean materials - easier if turbulent
dissipation maintains active fissures open

Thanks to Allan Rubin (Princeton U.) for displacement-discontinuity code and numerous discussions, & Robert Tyler, Terry Hurford, Alyssa Rhoden, & Karl Mitchell for additional discussions. **Research website: www.climatefutures.com**

for \gg Kyr.

Supplementary slides

Porco et al. AJ, 2014

Tectonic feedback between subsidence and meltback buffers the South Polar terrain to 5 GW

Open questions

Engine:

What powers Enceladus volcanism?

Tidal heating is the only plausible candidate

Tidal heating is the only plausible candidate, but location of heating is poorly constrained.

Source:

What is the water source for Enceladus' eruptions?

Sodium and nano-silica tell us that the source is a subsurface ocean, not clathrates or sublimation

Ocean water is exposed to space, raising energy balance problems

Plumbing system:

How can conduits between ocean and surface avoid freezing shut? (w/ Allan Rubin)

Turbulent dissipation within tiger stripes can power and (sustain the phase curve of) Enceladus' eruptions, and has cool tectonic implications!

Pipe model and slot model

Option: Array of unresolved pipes Area changes by 10^-4 Option: Each tiger stripe is one slot Area changes by order unity under 1-bar pressure cycle

Apertures < 10 m (not to scale)

Testable predictions

Kite & Rubin, accepted by PNAS.

For the data from Cassini's final flybys:

- 1. Endogenic thermal emission should be absent between tiger stripes.
- 2. No correlation between emission and *local* tiger-stripe orientation
 - Distinguishes the slot model from all crack models.
- 3. Smooth distribution of thermal emission
 - Contrast with spotty emission near jets (expected if flow is concentrated in pipes).
- 4. Steady pattern of spatial variability, in contrast to bursty hypotheses. Vapor flux should covary with ice-grain flux.

For numerical experiments:

- Changing water level and conduit width, when coupled to gas-dynamic flow in vent (Ingersoll & Pankine, 2010; Nakamura & Ingersoll, 2012), should match phase-curve amplitude.
- 6. "Ropy terrain" between tiger stripes (Barr & Pruess, 2010) should be consistent with compression of condensates; topography should not bulge up between tiger stripes.

inferred from gravity

Rudolph & Manga, Icarus 2009

Models of tidal modulation

Crack models are falsified by eruptions at periapse

Crack models are hard to reconcile with curtain eruptions at periapse

Enceladus period = 1.3 days Enceladus orbital eccentricity = 0.0047 Tidal stress amplitude ~ 1 bar eccentricity tide only thin-shell approximation k₂ appropriate for global ocean

Kite & Rubin, in prep. Slots interact elastically: used displacement-discontinuity method Paul Schenk / LPI / USRA 3040 Crouch & Starfield, 1983 Rubin & Pollard, 1988

Slot-slot interactions reduce total power output

Distortion (not to scale) of idealized straight, parallel slots

Displacement-discontinuity code by Allan Rubin

(4.4±0.2) GW excess thermal emission from surface fractures

Howett et al. 2014

South polar projection

Porco et al. Astron. J. 2014 Abramov & Spencer 2009

Spencer & Nimmo AREPS 2013 Spitale et al., accepted

Hotspots up to 200K No liquid water at surface Latent heat represented by plumes < 1 GW

Future directions

Application to Europa (claimed to have erupted in December 2012)

How does along-crack branching affect power?

How does changing water level and conduit width affect flow in vent?

What testable consequences would long-lived tiger stripes have for surface tectonics?

All existing models fail!

Long-lived water-filled slots have tectonic consequences

Tectonic feedback between subsidence and melt-back buffers Enceladus output to 2500 kg/s \times L_{vap} = 7 GW

Salt composition matches expectations for hydrothermal leaching Age of interaction unconstrained

