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Mars has been largely cold, hyper-arid, and
radiation bathed for the past 34— bllllon year

Current atmospheri
1-6 millibars (1000x less than'Earth suff c



There Is abundant evidence from landforms for
a previously more temperate climate on Mars
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- Dendritic valley networks
imply a sustained,

distributed water source -

rainfall and/or snowmelt.
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Crater densities suggest that the valleys date
consistently from 3.4-3.8 billion years ago
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Crater densities suggest that the valleys date
consistently from 3.4-3.8 bhillion years ago
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Surfaces from this period also exhibit diverse
minerals formed via sustained contact with water

@ Phyllosilicates [J Chlorides © Carbonates A Sulfates

Ehimann and Edwards (2014)




Measurements and models suggest atmospheric
pressures >100°’s mbar and probably <1 bar

Estimation of CO2 pressure

from carbonate deposits
(Hu et al., 2015)

Paleobarometers from

isotopes (D/H, Ar36, etc.)
(e.g., Webster et al., 2013)
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Mars now... Mars 4 billion years ago -
a habitable world?

Mars was Earth-like at the time when life was

first starting on Earth ...but we don’t have a
good record on Earth from this time period!
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Mars Exploration Family Portrait
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HOWEVER...
Climate models are unable to produce sustained
surface temperatures on ancient Mars above 0°C
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Was the early climate cold and only transiently wet?



In a cold climate, the topographic dichotomy
may trap water in ice sheets in the highlands

Known as the “Late Noachian icy

highlands” del I £ Wordsworth et al. (2013)
ighianas: moael, applies 10r Fastook & Head (2014)

pressures >100's mbar Kress & Head (2015)



The ice sheet would have been largely frozen to
the bed, with only localized melting and erosion

Limited geothermal heat flux on |
Mars would have inhibited basal o

melting (Cassanelli et al., 2015) .y
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The late Noachian icy highlands model is highly
controversial with many open questions

e [sthe icy highlands end member truly representative of the
entire time period?

e [f so, what drives transient warming events?

e Are these warming events long enough to create the
observed non-glacial hydrologic features?

* Are the observed possible glacial morphologies Noachian in
age, or related to later glaciations?

- This study: Is the mineralogy of ancient Mars
consistent with weathering in a perennially cold
climate?




We would expect similar cold-climate weathering
mechanisms on a cold and icy Noachian Mars as on Earth
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Alpine/arctic solls:
Subaerial leaching
by snowmelt




Alpine and arctic soils weathered by snow melt
are dominated by poorly-crystalline phases

* |n mature temperate soils with slow to moderate weathering
rates, crystalline clay minerals dominate (Singer, 1980)

* But very rapid leaching, as during seasonal melt, favors the
formation of poorly crystalline phases (Ziegler et al., 2003)

allophane-
dominated solls

e s re s rn snow line
smectite-

dominated solls

Alexander et al. (1993)
Tsai et al. (2010)




We would expect similar cold-climate weathering
mechanisms on a cold and icy Noachian Mars as on Earth

Wet-based glaciers:
'?“;.\ -~ Subglacial alteration by
s pressure melting and

v mechanical grinding

gy

- Cold-based glaciers:
7"’ perhaps thin-film
alteration at contact

with ice

Alpine/arctic sils:
Subaerial leaching
by snowmelt



Little is known about the mineralogy of glacial weathering,
and even less about glacial weathering on mafic terrains

* Most studies have focused on water chemistry - not solid
phases (Sharp et al. 1995; Tranter et al. 2002; Anderson 2000)

* Without a systematic study, we do not have enough information
to search for glacially weathered terrains on the surface of Mars.

This study: What is the mineralogy of glacial weathering?




Field site: Three Sisters volcanic complex,
Cascade Range, Central Oregon
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Collier Glacier is a classic U-shaped valley
with Iarge lateral moraines
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Site rationale: These glaciers have retreated over
1 km in the past 100 years due to climate change
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Site Rationale: The Three Sisters are the most mafic
glaciated peaks in the US, thus are a good Mars analog

ildreth et al. (2012)




First question: Can we detect signs of glacial alteration in '
remote sensing data” ;-




Thermal-infrared imagery shows high-silica
pink) vs. mafic (blue) volcanics.
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Thermal-infrared imagery shows high-silica
(pink) vs. mafic (blue) volcanics.
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However, glacial till plains look more silicic
than expected - is this due to alteration?
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Visible/Near-infrared spectral variability is

dominated by syn-eruptive “volcanic” alteration

- .
- . ' iy »
N A:ﬂ.. : .

~Oxidation.. % Gy # ¢ . _ § Oxidation 1% S X
(blue/cyanjss |

.
- 13

-'l

5

u ¥

-
™
f 48
e - B

: = AR ': - .‘.5.': s red ! )
P £ _I;Iydrothe;rr}al (,_\) [‘b' "~ Hydrothermal
s N, . " : e .
. { (magenta) i E L Y (vellow)
s : 5 L ._!;: 2'.- ] : 1 “‘

-




“Rainbow Moraine” is composed
of volcanically altered rp_ks,
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Glacial moraines have a distinct VNIR spectral
character (yellow) - is this due to alteration?
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Second question: Can we detect signs of glacial
alteration In the field and lab?
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Glacial flour is the dominant phase by surface area
in lateral moraines and proximal to the glacier

E— _ a .
Glacial flour is probably
thus responsible for the
distinct VNIR signature
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“Regelation films” precipitate subglacially due to
pressure melting and refreezing.

ICE FLOW ’

BEDROCK

Hallet (1976)

Stoss: Pressure melting, Lee: Release of pressure,
dissolution of bedrock/till. Solution refreezing. Freeze forces ions
becomes supersaturated. out of solution: precipitation!



Second question: Can we detect signs of glacial
alteration In the field and lab?

(2) Determine spectral signatures
and mineralogy of alteration phases
—> Field VNIR spectra of outcrops
—> Lab VNIR/TIR spectra

—> XRD, SEM, TEM, XRF




VNIR spectra of glacial sediments and regelation
films show clear alteration, mainly hydrated silica.
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Emissivity (offset for clarity)

Thermal-infrared spectra are dominated by
poorly crystalline components.
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XRD indicates that glacial flour is composed of
primary minerals and an amorphous component

Peaks due to feldspar,
pyroxene, olivine, oxides

.|\ Diller glacial flour, bulk
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Second question: Can we detect signs of glacial
alteration In the field and lab?

(3) Relate alteration processes to

agueous geochemistry
—> Field pH, temperature, silica, etc.

—> Collect water for lab analyses




Silica dissolution is occurring in this glaciated
volcanic system independent of meltwater pH.

Si0, (mg/L)
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But the source of
silica (subglacial vs.
poroglacial) is unclear
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Mafic glacial systems are unique in that they are appear
to be dominated by silica rather than carbonate.

* Previous studies: carbonate dissolution coupled with sulfide

oxidation regardless of bedrock, aided by microbial populations
(Sharp et al. 1995, Wadham et al. 2001; Tranter et al. 2002; Anderson et al. 2003;

Wadham et al. 2004; Skidmore et al. 2005; Hamilton et al. 2013).

* (Calcite regelation films are well-documented, silica glaze is rarely
mentioned (Hallet 1975,1979; Whalley et al. 1990; Peterson & Morseby 1979)

e Detailed chemistry/mineralogy of glacial flour has yet to be
examined, especially amorphous component: stay tuned!




Glaciers provide diverse microenvironments, and
their unique chemistry supports unique ecosystems.
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New hypothesis: Poorly-crystalline silicates on
Mars may indicate past cold-climate weathering

* Where on Mars would we expect these phases to accumulate?

(1) Concentration in fine-grained component of distal
lacustrine sediments

(2) Exposure in aeolian sediments

* | ocations we can test this hypothesis:

- Lake sediments in Gale Crater
(age poorly constrained, late Noachian - mid Hesperian)

- Possible lake sediments in Gusev Crater
(age poorly constrained, Noachian - mid Hesperian)

- Regional aeolian sediments observed from orbit
(probably Amazonian, but other source eras possible)



wounts

Mars Science Laboratory data indicate that poorly crystalline
phases are a major component of Gale Crater sediments
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Spirit rover data indicate that poorly crystalline silicates are
also a major component of altered rocks in the Columbia Hills
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Thermal-IR models of many regions on Mars
require a poorly crystalline high silica component

Global map of TES high-silica spectral signature

compared to modeled high silica wt %:
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However, Noachian surfaces exhibit clear
examples of well-crystalline clay minerals

Many deposits of clay
minerals are consistent with
deep leaching profiles,
suggesting sustained rainfall




Conclusions: Cold-climate melt-driven weathering could
be the origin for poorly-crystalline phases on Mars

* Based on our new analog work and previous terrestrial studies,
cold-climate weathering tends to generate high abundances of
poorly crystalline silicates

* Poorly crystalline silicate phases appear to be a common
component of martian sediments

 However, we have yet to investigate unambiguously Noachian
sediments in situ, and Noachian regions exhibit greater degrees
of weathering than we can currently explain with cold climates

Thus, we cannot yet confirm a persistently cold climate on
Noachian Mars

* Ongoing work: MSL studies, composition of poorly crystalline
phases in diverse climate regimes, experimental precipitation of
amorphous phases
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