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SS formed from disk of gas, dust & rocks

Gas & dust was short lived — only a few my

Rapid formation of km-sized bodles (planeteS|maIs) _
- Radial P&T gradlent g <




Most of the dISk formed ice- bearlng planeteS|maIs
Comets — surviving members -
of the vast populatlon of |ce-bear|ng bodles ~




Comparison of solids in the inner and outer disk regions

Important clues for disk processes
Most records are in small grains — requires sample analysis

Materials from inner disk regions

Meteorites — moderately strong rocks from asteroidal sources
Some are well preserved collections of nebular materials
Selection process — atmospheric entry & orbital delivery

All modified to some extent by “parent body processes”
Even the best - heated to ice melting temperature

Hydrated silicates — warm & wet in early SS (%¢Al decay?)

Materials from outer disk regions

Need samples from ice-rich planetesimals

Samples from comets — stored beyond Neptune

Perhaps a few meteorites??

Interplanetary Dust samples (IDPs) — reach Earth & survive atm entry
Directly collected comet samples




COMETS - Distinctive. property
» COMETARYACTIVITY | '
' Act|V|ty driven by subliming ice

Ice formed at low temperature’

Comets unstable in mner SS
.Loss of gas & dust G s 5 HzO 128155k
M. ' CO 23-28k
CO, 60-72k
CCHE 2632k 7.
HCN = 100-120k

Comets formed in the coldest regions of the early SS







Collecting'Comet Dust on a flyby mission (6.1 km/s)

Comet Wild 2 A typical Jupiter Family Comet 4
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Stardust Silica Aerogel (0.01 — 0.05 g/cc)
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Large solid components
Found in the deepest portion of
aerogel capture tracks

Submicron components

2-100um solid
components

Very well preserved!



6 Km/S Comet Particles Captured In Silica Aerogel
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What is in the tracks? Brief summary

1) Unequilibrated mix of submicron — 100um solid components

1) Most components >2um are phases and phase assemblages
found in primitive meteorites — high temperature materials

3) Isotopically anomalous pre-solar grains are rare
4) Hydrated silicates not found

5) Organics include hi D/H and °N/14N materials & glycine



presolar grains
in Wild 2
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Finding presolar grains in a comet
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Presolar silicon carbide
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6 isotopically
anomalous
presolar grains

5in craters
1 in aerogel
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O-rich AGB stardust N meteorltes
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~90% of presolar silicates/oxides L. Nittler




Presolar Silicate Abundances
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Wild 2 isotopically anomalous presolar grains are rare
<<< than expected
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Is Wild 2 an unusual comet -
Not dominated by presolar grains?

NO

No meteorites or cometary Interplanetary Dust
contain abundant pre-solar grains

Isotopically anomalous presolar grains
apparently did not survive well in the early solar system— anywhere!
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Are we missing something?

Does the comet contain
Isotopically normal GEMS?
Destroyed during capture? A

GEMS
Glass + Embedded Metal & Sulfide




Chondrules — rounded small bodies in meteorites

* Molten silicate droplets in the solar nebula

* Formed at 1550°C to 2000°C!

* The dominant solids where some asteroids formed




Relict 160-rich olivine in 40um Gozen-sama chondrule

Complex multi-stage history - important analog to meteorite chondrules
Could not plausibly have formed by annealing of >10° amorphous interstellar grains!

Gozen-sama
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The dominant solids where OC’s accreted

Chondrules in Wild 2

the most common large grains?

Pyroxenes microstructure in comet 81P/Wild 2 terminal Stardust particles
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Inti (Track 25) — fragments of a cometary CAl

A,B,C, etc. — slab letter
1,2,3,4,5, etc. — fragment number
= CAIl fragment

= Non-CAl fragment
\/

Approx.
TP location

° Bottom of

track cut off
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Wild2 refractory oxide and silicate grains
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Comet Wild 2 CAl: Oxygen Isotopes
Comparison to spinel-rich, fine-grained inclusions (FGls)
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Common Wild 2 refractory nodular assemblies - Px rimming spinel & anorthite
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CAls: FGIs in CV3 Chondrites and Comet Wild 2

Fine-grained, spinel-rich inclusion?!

Comet CAls

Giant Cluster IDP

10’ nodules in FGI

Properties of FGls:

~5-50 um in size

nodular textures

aggregates

major minerals: Sp, An, Cpx+/-Mel
little to no low T alteration minerals

'Krot et al. (2004); 2MacPherson et al. (2004)




CAls in Giant Cluster IDP: Element Maps
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Orbornites
TiN

~30nm
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Cometary CAls: Moderate Refractory Character
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Cometary CAls: Moderate Refractory Character

MgO + SiO,

chondrites

O Type A CAl

<& Type B CAl
Type C CAl

* FGI

°* AOA




How did chondrite building materials reach the comet accretion region?

{Frank Shu predicted that CAls & chondrules would be ejected by the X-Wind}

(X-wind model strongly criticized by Steve Desch)

Bipolar Ballistic Transport ?
Outflow

\ N\

Turbulent Transport

'

1\ B VA VYAVYAVYA
A DAL UL OL R,
! ¥ : : Flosst al. 2013
Asteroids Comets

Disk or ballistic transport of submicron to 100pum solids??

Did they form in-situ in the outer SS? Shocks or in giant
planet embryos? Bridges et al. 2012




Using olivine (Mg,Fe),SiO, as a “tracer”
A major mineral in comets, meteorites & circumstellar disks

*** Wild 2 olivine =**

~l
*




COMPARISON OF GRAIN POPULATIONS
A) accreted into comets

B) accreted into asteroids (primitive chondrites)
Using Mn abundancesin olivine

Mn is a minor element (<1%) that substitutes for Fe in olivine crystals
(Fe++ and Mn++ have the same size and charge; solar Mn/Fe ~ 0.01)

|0Iivine Fe/Mn ratios influenced by nebular environments |

Fe Mn volatility differences
Mn usually confined to silicates
Fe carried by silicates, metal & sulfides



Mn [afu]

Olivine in chondrules from different primitive chondrite groups

distinctive Mn Fe compositions — related to nebular environments
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C t I. . Wild 2 - black dots @ & blue triangles A
omet olivine “Cometary” Interplanetary dust particle - red squares m

@ NO MN FE CORRELATION for Fe-rich olivine!

@ NOT DOMINATED BY GRAINS FROM THE OC, CO OR CR FORMATION REGIONS!

@ SAMPLES A MORE DIVERSE SET OF ENVIROMENTS THAN ANY CHONDRITE GROUP!
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@ Wild 2 Mn Fe olivine distribution - unlike any chondrite group

@ Matches olivine in a large “cometary” interplanetary dust particle

@ Wild 2 olivine cannot be derived from a single reservoir like common chondrites

@ Must have formed in numerous nebular environments

HYPOTHESIS - HISTORY OF >1pum COMETARY ROCKY MATERIALS

Formed in many hot regions in the inner SS — over a few my
Transported & mixed >10AU
Pristine comets likely formed from similar complex mixtures of inner SS materials

Because of mixing — outer SS planetesimals are likely to have formed from similar
mixes of nebular rocky materials — totally unlike asteroids in inner SS



Inner and Outer SS Planetesimals

Diversity of Initial Rocky Components

* Comets - mix of distantly made rocky materials

LITTLE comet-to-comet DIVERSITY Comet sol|ds # meteonte types
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Major Findings

Wild 2 solids not dominated by isotopically anomalous pre-solar grains
They were destroyed by solar system formation

Wild 2 contains chondrule & CAIl fragments
(inner SS meteoritic materials formed at 1400-2100 K!)

Most Wild 2 rocky solids were formed in the inner SS & transported beyond
Neptune

Formed by similar processes that formed high temperature chondrite
components

Rocky materials, organic & icy components — not formed in similar
environments

Comet siicates >1um usually not formed by annealing of amorphous materials

Wild 2 anhydrous silicates - comet not a fragment of a larger body




A major difference between comets & asteroids

Asteroids mainly accreted locally-made materials
(properties give chondrite groups distinctive properties)

Comets accreted solids transported 10°’s of AU
Sampled major portions of the entire disk




